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■ Abstract Simulation of protein folding has come a long way in five years. No-
tably, new quantitative comparisons with experiments for small, rapidly folding pro-
teins have become possible. As the only way to validate simulation methodology, this
achievement marks a significant advance. Here, we detail these recent achievements
and ask whether simulations have indeed rendered quantitative predictions in several
areas, including protein folding kinetics, thermodynamics, and physics-based methods
for structure prediction. We conclude by looking to the future of such comparisons
between simulations and experiments.
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INTRODUCTION: GOALS AND CHALLENGES

Although several questions relate to the “protein folding problem,” including struc-
ture prediction (1, 94) and protein design, this review concentrates on another
aspect of folding: How do proteins fold into their final folded structure? Exper-
imentally characterizing the detailed nature of the protein folding mechanism is
considerably more difficult than characterizing a static structure. We turn to the
combination of experiment and atomistic models (that can readily yield the de-
sired spatial and temporal detail), and ask how quantitatively predictive are these
simulations? The true test is statistical significance. The very act of statistically
comparing simulations with experiments is critical and leads to either model vali-
dation or refinement.

Simulating protein folding remains challenging. The most straightforward ap-
proach, molecular dynamics (MD) simulations using standard atomistic models
(e.g., force fields such as CHARMM, AMBER, or OPLS), quickly runs into a sig-
nificant sampling challenge for all but the most elementary of systems. Whereas
small proteins fold on the multiple microseconds to second timescale, detailed
atomistic simulations are currently limited to the nanosecond to microsecond
regime. To overcome this barrier, researchers must choose between simplified
models and alternate sampling methods, both of which introduce new approxima-
tions. We emphasize that the relevant question is not whether a given method is
“correct” in some absolute sense (as all models have limitations), but whether the
model is predictive.

In the following sections, we review several approaches and ask to what extent
these simulations have yielded statistically predictive results. For organizational
purposes we consider first the prediction of kinetics, then the folding pathway, and
finally the prediction of thermodynamics, including native state structure.

PREDICTIONS OF FOLDING RATE

Impetus and Methods of Rate Assessment

The most accessible quantitative observables of two-state proteins are folding
rate, unfolding rate, and thermodynamic stability. Thus, it is important to validate
any simulation method through quantitative comparisons with experiments with
proper statistics. As rates and free energies are the natural quantitative experimental
measurements, relative or absolute prediction of these quantities is necessary for a
direct connection to experiment and a true assessment of theoretical methodology.

Rate Predictions from Topology-Based Models

Plaxco and coworkers (85, 86) studied the relationships between polymer length,
native state stability, and native topology using folding rates for two dozen small,
two-state, single-domain proteins. To quantify native state topology, they defined
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the relative contact order (CO) of a protein fold as

CO = 1

L · N

∑

N

�Li, j , 1.

where L is the sequence length, N is the total number of inter-residue, nonhydrogen,
atomic contacts within 6.0 Å, and �Li,j is the sequence separation of contacting
residues i and j. Significant correlations (R = ∼0.9) were observed between
native topology (CO) and experimentally determined folding rates, which strongly
suggest a link between global native structure and folding kinetics. Whereas the
effective folding rate of small two-state folders was previously predicted to be
ln[keff ] = a + b · CO, this fit offers little insight into the folding mechanism or
the general properties that make CO predictive.

More recently, many theories for the possible origins of the predictive capabili-
ties of CO and the cooperativity inherent to two-state folders have been suggested;
because of space limitations, we describe only three of these theories. The zip-
per model of Muñoz et al. (79) was one of the first works to predict the folding
rates for a large range of proteins. Models in this class relate the free energy to the
number of native segments present, where folding propagates outward along the se-
quence from an initial nucleus. This model and more sophisticated generalizations
are successful in predicting folding rates and illustrate the link between topology
and rate (43). Debe and coworkers (22) used a generic protein Monte Carlo sim-
ulation method to sample compact and semicompact protein conformations for
sequences of length L, comparing each observed conformation with ∼20 hetero-
geneous native folds (also of length L) and looking for matches in global backbone
topology (21, 23). Their results suggest that the native topomer can be found in
a diffusive search of the conformational space without a specific mechanism to
enhance the sampling. Finally, Plaxco and coworkers (73) derived a relationship be-
tween the number of native contacts N and the effective folding rate that simplifies
to the CO correlation. Kinetic Monte Carlo simulations using this model (as a
Gaussian chain) result in first-order kinetics in which the rate-limiting step is the
formation of the N contacts in the native topology (74), thus giving a physical
interpretation of the observed two-state kinetics for small proteins.

Rate Predictions from Simulated Dynamics

Analytic models of protein folding differ from standard simulation methods, such
as MD and Langevin dynamics, owing to a lack of specificity arising from in-
tramolecular interactions, which must be included through approximate means.
This specificity is likely needed for the understanding of sequence-specific ef-
fects. With that in mind, we now turn to rate predictions that are made using
atomistic potentials on the basis of various approximations of the physics of in-
teratomic interactions (including especially solvent-mediated interactions). As the
use of continuum representations of the solvent greatly decreases sampling time,
the use of such models has become widespread. The most common electrostatic
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treatments are the generalized Born (GB) equation (87) and the distance-dependent
dielectric (29). For our purposes, we consider rate predictions under these models
collectively. The following discussion begins with implicit solvent rate predictions
and is followed by a discussion of the limited number of rate predictions made
using explicit representations of the solvent.

SIMULATIONS IN CONTINUUM SOLVENT WITH LOW VISCOSITY Caflisch and co-
workers (28) have pioneered long atomistic folding simulations using simple,
computationally efficient implicit solvent models. By using low (or no) viscosity
in their simulations, they accelerate the timescales involved in folding and are
able to observe multiple folding transitions. Such reversible folding transitions
are excellent evidence that sampling is sufficient for useful thermodynamic analy-
sis. However, like any approximation, low-viscosity simulations have limitations,
which we discuss below.

In the initial study by Caflisch and coworkers (28), the α-helical (AAQAA)3

peptide and the β-hairpin-forming sequence V5DPGV5 were simulated using the
united atom CHARMM force field (8) and a distance-dependent dielectric/solvent-
accessible surface area (SA) solvent model with ε(r) = 2r. From their combined
sampling of ∼4 µs for these peptides at multiple temperatures (270 to 510 K),
Arrhenius behavior was seen at low temperatures, with mean folding times (inverse
folding rates) for the helix and hairpin predicted to be 3.41 and 95.6 ns at 300 K
(extrapolated from simulations at or above 330 K, the coldest temperature at which
folding was tractable in the study). As noted by the authors, their implicit solvent
model did not account for solvent viscosity, and the lack of solute-solvent friction
in their simulations makes these folding times lower bounds on the true folding
times.

Using the methodology described above, Caflisch and coworkers studied two
additional secondary structural motifs: the α-helical Y(MEARA)6 peptide (44)
and Beta3s, a three-stranded antiparallel β-sheet (30). Surprisingly, the helical
peptide, which contains more helical content (and thus helical stability) than the
(AAQAA)3 peptide, folded much more slowly at 300 K, with a mean folding time
of ∼80 ns. For Beta3s, a mean folding time of 31.8 ns was predicted at 360 K, and
a following study predicted a folding time of 39 ns at 330 K (10), both of which
are significantly faster than the ∼5 µs timescale at lower temperatures reported by
De Alba et al. (19). Increased sampling of Beta3s in four additional simulations,
each with a length of 2.7 µs or greater, extended the predicted folding time using
this model to ∼85 ns at 330 K. Additional simulations were also conducted to study
the folding of the Beta3s mutant with the two sets of turn GS residues replaced
with PG pairs (31), with the mutant folding three times as fast as Beta3s. These
inverse folding times thus remain rather high.

This raises the question of whether researchers can use low-viscosity simulation
and scaling arguments to predict folding rates. A nonlinear relationship between
folding time and viscosity was reported by Zagrovic et al. (116) for the folding
kinetics of a 20-residue tryptophan (Trp)-cage miniprotein in the GB/SA implicit
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Figure 1 Viscosity dependence of the folding time of the Trp-cage molecule in
implicit solvent. The folding times and associated errors were calculated using the
maximum likelihood approach. Folding times and viscosities are given relative to the
folding time in water and the viscosity of water, respectively. The error bars given
are errors propagated on the basis of the Cramer–Rao errors for the individual folding
times.

solvent model of Still et al. (87) under a range of solvent viscosities. Figure 1 plots
the observed relationship between inverse rate (τ = 1/k) and viscosity (1/γ )
relative to the case for water-like viscosity with γ water = 91 ps−1 (115). Linear
scaling of the folding time with solvent viscosity holds for viscosities as low as
∼1/10 that of water; however, below this point the time scales as t ∼ γ 1/5. Although
applying such scaling rules to the rate predictions of Caflisch and coworkers in
low viscosity would bring their values closer to experimentally established rates
for these systems, the precise effect of low viscosity for each of these systems
remains unclear.

What is the significance of this nonlinearity? The idea that low-viscosity sim-
ulations do not adequately capture the folding kinetics may be a sign of further
inadequacies in such a model. The lack of solvent viscosity may lead to fast
collapse to a nonnative globule with folding proceeding from this globule. Sim-
ulations with water-like viscosity collapse on longer timescales and may anneal
interatomic contacts prior to collapse. Plaxco & Baker (84) studied folding of the
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IgG binding domain of protein L experimentally and via simulation as a diffu-
sive barrier-crossing event. Their findings indicate that the rate-limiting step was
strongly correlated with solvent viscosity, with negligible internal friction. Thus,
neglect of solvent viscosity in protein folding simulations, while allowing for de-
termination of an upper bound on relative folding rates, may significantly affect
the observed folding mechanism.

SIMULATIONS IN CONTINUUM SOLVENT WITH WATER-LIKE VISCOSITY Including
viscosity significantly increases the required sampling time, yet with water-like
viscosity, absolute folding kinetics can be measured directly. To this end, Pande
and coworkers (82) have applied distributed computing to sample trajectory space
stochastically and to extract rates from an ensemble dynamics perspective. Two-
state behavior is the central concept upon which rates are extracted via ensemble
dynamics; dwell times in free energy minima of the conformational space are sig-
nificantly longer than transition times (i.e., barrier crossing is much faster than the
waiting period). The probability of crossing a barrier that separates state A from
state B by time t is thus given by

P(t) = 1 − e−kt , 2.

where k is the folding rate. In the limit of t � 1/k, this simplifies to P(t) ≈ kt and
the folding rate (according to the Poisson distribution) is given by

k = Nfolded

t · Ntotal
±

√
Nfolded

t · Ntotal
. 3.

For example, if 10,000 simulations are each run for 20 ns and 15 of them cross
a given barrier, we obtain a predicted rate of k = 0.075(±0.019) µs−1, which
corresponds to a folding time of 13.3(±3.4) µs. In this way, Pande and coworkers
can use many short trajectories to investigate the folding behavior of polymers that
fold on the microsecond timescale: As shown previously, using M processors to
simulate folding results in an M-times speedup of barrier-crossing events (100).
When t > 1/k, as is the case for helix formation and other fast processes, ensemble
convergence to absolute equilibrium can be established, and the complete kinetics
and thermodynamics can be extracted simultaneously.

In several recent studies, Pande and coworkers have utilized implicit solvent
models while maintaining water-like viscosity via a Langevin or stochastic dy-
namics integrator with an inverse relaxation time γ . In the first study (118), they
introduced a method of “coupled ensemble dynamics” as a means to simulate
the ensemble folding of the C-terminal β-hairpin of protein G (1GB1) using the
GB/SA continuum solvent model of Still et al. (87) and the OPLS united atom
force field (56) with water-like viscosity. A total sampling time of ∼38 µs was
obtained, with a calculated inverse folding rate of 4.7(±1.7) µs, in agreement with
the experimentally determined value of 6 µs (79).

Other hairpin structures have been studied by the Pande group more recently,
both in an effort to gain insight into hairpin folding dynamics and for a more
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thorough comparison with experimental measurements. They reported folding
and unfolding rates for three Trp zipper β-hairpins (104) using the methodology
described above, including TZ1 (PDBID 1LE0), TZ2 (PDBID 1LE1), and TZ3
(PDBID 1LE0 with G6 replaced by D-proline). As shown in Table 1, the relative
inverse folding rates are in good agreement with experimental fluorescence and
infrared measurements provided by experimental collaborators. Unfolding rates
were also predicted with relatively strong agreement.

Beyond these investigations of simple hairpin subunits, several small pro-
teins were studied with an implicit solvent methodology. The first, a 20-residue

TABLE 1 Comparing corrected simulation protein inverse folding rates with experimenta

System Force field Solvent T (K) τ fold (µs) τ exp (µs)

C-terminal 1GB1
β-hairpin

OPLSua GB/SA 300 4.7(±1.7) 6

TZ1 (PDBID
1LE0)

OPLSaa GB/SA 296 5–7 6.25

TZ2 (PDBID
1LE1)

OPLSaa GB/SA 296 3–6 2.47

TZ3 (1LE0,
replacing G6
with P)

OPLSaa GB/SA 296 2–6 0.83

Trp cage (PDBID
1L2Y)

OPLSua GB/SA 300 1.5–8.7b 4

BBA5 single
mutant

OPLSua GB/SA 298 16 <10

BBA5 double
mutant

OPLSua GB/SA 298 6 7.5(±3.5)

Villin headpiece OPLSua GB/SA 300 5 4.3(±0.6)

C(AGQ)W AMBER-94 TIP3P 300 0.076(±0.006) 0.073
(W quenching) CHARMM22 TIP3P 300 0.127(±0.006) 0.073

C-terminal 1GB1
β-hairpin

CHARMM22 TIP3P 300 5 6

Engrailed
homeodomainc

ENCAD F3C 373 O(0.010) 0.005–0.025

Fs peptide AMBER-99φ TIP3P 305 0.016–0.020 0.016(±0.005)

BBA5 AMBER-GS TIP3P 298 7.5(±4.2) 7.5(±3.5)

Villin headpiece AMBER-GS TIP3P 300 10.0(±1.7) 4.3(±0.6)

aPredictions described in the text for which no reasonable experimental comparison can be made have been left out of the
table.
bBased on a range of alpha carbon RMSD cutoffs from 2.5 to 3.0 Å.
cThermal unfolding rates, rather than folding rates, are compared.
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miniprotein known as the Trp cage, has an experimental folding time of ∼4 µs.
From simulations totaling ∼100 µs the folding rate was estimated on the basis of a
cutoff parameter in alpha carbon RMSD (root mean-squared displacement) space:
kfold(3.0 Å) = (1.5 µs)−1; kfold(2.8 Å) = (3.1 µs)−1; kfold(2.7 Å) = (5.5 µs)−1;
kfold(2.6 Å) = (6.9 µs)−1; and kfold(2.5 Å) = (8.7 µs)−1. Although the predicted
folding time roughly agreed with the experimental value, the calculations illus-
trated the dependence of rates upon definition of the native state (to minimize
this dependence cutoffs must be chosen along an optimal reaction coordinate).
Post analysis of ensemble folding data is not necessarily trivial unless there are
many folding events and a stable native ensemble is easily distinguished from
decoys with similar topology. Similar rate predictions were made for two mutants
of the 23-residue BBA5 miniprotein and compared with temperature-jump mea-
surements made by the Gruebele laboratory (103). A single mutation replaced F8
with W, which acts as the fluorescent probe, and the double mutant also included a
replacement of V3 with Y. As shown in Table 1, the agreement between simulation
predictions and experimental measurements was excellent for the double mutant
at 6 µs and 7.5(±3.5) µs, respectively. The agreement was less striking in the case
of the single mutant, for which experiment offered an upper limit of 10 µs and
simulation predicted 16 µs, with a range of 7 to 43 µs on the basis of the alpha
carbon RMSD cutoff used.

One of the most notable simulation studies to date is the tour de force 1 µs
trajectory of the villin headpiece conducted by Duan & Kollman (26). Pande and
coworkers have simulated the ensemble folding of this 36-residue three-helix bun-
dle (PDBID 1VII) using the GB/SA continuum solvent and the OPLS united atom
force field in water-like viscosity (117). With over 300 µs of simulation time, the
folding time was predicted to be 5 µs (1.5 to 14 µs using alpha carbon RMSD
cutoffs from 2.7 to 3 Å, as described above), which was compared with the 11 µs
folding time derived from nuclear magnetic resonance (NMR) lineshape analy-
sis. A follow-up study by Eaton and coworkers (61a) tested the prediction using
temperature-jump fluorescence and found the folding time to be 4.3(±0.6) µs,
validating the rate prediction.

Is this method a panacea for addressing long timescale dynamics? The direct
observation of folding kinetics presents difficulties, especially for larger proteins
or those without single-exponential behavior. For example, folding ensembles gen-
erated from a single unfolded model attempt to populate the unfolded ensemble
and observe folding. However, the timescale involved for the initial equilibration
and the timescale necessary for chain diffusion across the folding barrier scale
dramatically with chain length (61). These factors make it increasingly difficult to
observe both equilibration and folding for large proteins. In addition, Paci et al.
(80) have shown that folding events in extremely short trajectories can proceed
from high-energy initial conformations. Deviations from two-state behavior can
also make interpretation of ensemble kinetics difficult (33), and given the short
timescale of current folding simulations (10 to 1000 ns), any obligate intermediate
with an appreciable dwell time (1 to 100 ns) may represent a sufficient deviation.
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Fortunately, these challenges may not be intractable: The timescale for downhill
equilibration to a relaxed unfolded ensemble may require long simulations, but
should be much faster than folding. Also, the detection of intermediates and mul-
tiple pathways can be accomplished by the comparison of folding and unfolding
ensembles. Finally, these concerns may also be addressed with new Markovian
state model methods (102, 110).

Regardless of the relatively strong agreement between ensemble simulations in
implicit solvent and experimental rate measurements, several factors must be con-
sidered in interpreting such simulation results. Lacking a discrete representation
of water, these studies ignore the potential role that aqueous solvent might play
in the folding process. Furthermore, the compact nature of the relaxed unfolded
state ensembles observed using the GB/SA solvent model may pose problems
for the folding of larger proteins, such as artificial trapping in compact unfolded
conformations.

RATE PREDICTIONS IN EXPLICIT SOLVENT Although simulating folding in explicit
solvent remains a daunting task, a number of results have recently been published
[most often employing rigid three-point water models such as TIP3P (54) or SPC
(3)]. The use of such models can add insight into the dynamics of biologically rel-
evant solutes; however, it must be stressed that the added computational demand
imposed by explicit solvent models does not necessarily equate with added accu-
racy in the resulting simulations (for example, in comparison with the results that
employ implicit water models described above), and several shortcomings inherent
to these models are known. Most importantly, commonly used water models have
generally been parameterized to a single temperature (∼298 K) and poorly capture
the temperature dependence of important properties such as the solvent density
and diffusion coefficient (45). Improved representations of the solvent usually add
to the required processing time. Thus, the use of explicit water models generally
involves simple solvent models at or near ambient/biological temperature.

Even simple explicit water models greatly limit the simulation timescale for
a solute of given molecular size, and it is not surprising that rate predictions
using such models have previously been limited to the most rapid events. Hummer
et al. (48, 49) studied helix nucleation in the A5 and A2GA2 peptides using the
TIP3P model at temperatures from 250 to 400 K, placing the nucleation event
on the 100 ps timescale, in good agreement with the upper bound of 100 ps
reported by Thompson et al. (111). Yeh & Hummer (114) also studied loop closure
kinetics in the C(AGQ)nW peptide (n = 1, 2) using the AMBER-94 (14) and
CHARMM22 (72) force fields to compare simulated intrachain contact rates (based
on tryptophan triplet quenching by cysteine) with the experiments of Lapidus et al.
(63). Although the resulting conformational distributions between the two force
fields differed significantly, the predicted quenching times faired well compared
with the experimental result of 73 ns: AMBER-94 predicted 76 ± 6 ns and
CHARMM22 predicted 127 ± 6 ns after correction for the viscosity difference
between the simulations and experiments.
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While these studies offer insight into the most elementary events in protein
folding, a number of studies have recently been published on the formation and/or
denaturation of larger protein structure. Daggett and coworkers (75, 76) have re-
ported unfolding rate predictions using explicit solvent models with direct exper-
imental comparisons. The 61-residue engrailed homeodomain (En-HD) forms a
three-helix bundle similar to that of the villin headpiece and undergoes thermal
denaturation at 373 K with a half-life of 4.5 to 25 ns. Mayor et al. (75, 76) simu-
lated the thermally induced unfolding of En-HD using the F3C water model (66) in
ENCAD (65) at this temperature with an unfolding rate on the tens of nanoseconds
timescale. The time needed to reach the putative transition state at 75 and 100◦C,
60 ns and 2 ns, respectively, was roughly consistent with the extrapolated experi-
mental unfolding rates. Precise rates cannot be extracted from a single unfolding
event because of the stochastic nature of protein dynamics.

Bolhuis (5) thoroughly simulated the folding of the C-terminal β-hairpin of
protein G using a stochastic transition path sampling methodology. Bolhuis em-
ployed the transition interface sampling method to extract transition kinetics. At
300 K, with an equilibrium constant of ∼1, the predicted folding time of 5 µs using
the TIP3P explicit solvent is in good agreement with the experimental rate of 6 µs
(79) and with the rate predicted by Zagrovic et al. (118) using an implicit solvent.
The observed agreement suggests that path sampling will be useful in future simu-
lation studies to elucidate the kinetics and mechanisms inherent to protein folding,
and it will be interesting to see such methods applied to larger and more complex
systems.

Peptides and miniproteins allow for complete and accurate sampling of folding
and unfolding events via simulation at biologically relevant temperatures. Sorin &
Pande (105) recently studied the helix-coil transition in two 21-residue α-helical
sequences and demonstrated complete equilibrium ensemble sampling for mul-
tiple variants of the AMBER force field, thus allowing quantitative assessment
of the potentials studied. Observing that the previously published AMBER vari-
ants resulted in poor equilibrium helix-coil character compared with experimental
measurements, they tested a new variant denoted AMBER-99φ and showed that
it more adequately captured the helix-coil thermodynamics and kinetics, yielding
a predicted helix formation rate of 0.05–0.06 ns−1, in excellent agreement with
Williams et al. (112), who derived a value of 0.06 ns−1 from temperature-jump
measurements.

To study the formation of a more complex protein structure, Pande and cowork-
ers (89) recently reported unbiased folding simulations of the 23-residue minipro-
tein BBA5 in explicit solvent. Ten thousand independent MD simulations of the
denatured conformation of BBA5 solvated in TIP3P water resulted in an aggregate
simulation time of over 100 µs. This sampling yielded 13 complete folding events
that, when corrected for the anomalous diffusion constant of the TIP3P model,
result in an estimated folding time of 7.5(±4.2) µs. This is in excellent agree-
ment with the experimental folding time of 7.5(±3.5) µs reported by Gruebele
and coworkers (103).
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Folding of the villin headpiece was first attempted by Duan & Kollman in 1998
(26). When they used the TIP3P explicit solvent, their single 1 µs simulation did
not show complete folding, which is not surprising given the ∼5 µs folding time
for that protein. Pande and coworkers (G. Jayachandran, V. Vishal & V.S. Pande,
manuscript in preparation) have recently observed folding of this protein using the
TIP3P water model and the AMBER-GS force field at 300 K, thus increasing the
maximum sequence size of proteins for which simulated folding has been observed
with MD. With a total sampling time of ∼0.5 ms, a folding time of 10(±1.7) µs
was predicted using a particle mesh Ewald treatment of long-range electrostatics.
Identical simulations using a reaction field treatment yielded 9.9(±1.5) µs. These
values are somewhat slower than the 4.3(±0.6) experimental folding time, which
might be due to the slow equilibration previously observed for helix formation
under the AMBER-GS potential (105).

Closing Statements on Simulated Rate Predictions

Prediction of relative rates (e.g., demonstrating a correlation between experimental
and predicted rates) is valuable; however, prediction of the absolute rate without
free parameters is a more stringent test. Although calculation of absolute rates is
computationally demanding, we expect such absolute comparisons to become more
common (for increasingly complex proteins) with the advent of new methods and
increasing computer power. Finally, we stress that a quantitative prediction of rates
is not sufficient to guarantee the validity of a model. The ability of different models
to quantitatively predict folding rates strongly suggests that more experimental data
are needed to further validate simulation.

Our focus on in vitro protein folding alone is not intended to detract from the
advances seen in related areas. These include, but are not limited to, the character-
ization of protein folding rates in pores (58), in chaperonins (2), and under force
(71), as well as rate predictions for small RNAs (106) and nonbiological poly-
mers (27). Additionally, several coarse-grained calculations have been employed
to study folding and unfolding rates (11, 50, 78). Indeed, a number of methodolo-
gies are now employed so that researchers may understand the kinetics of protein
folding and unfolding, from molecule-specific atomistic simulations to statistical
calculations of CO that attempt to characterize rates across a range of systems.
A similar spectrum of methods has also been applied to folding mechanism, as
discussed below.

IDENTIFYING THE PATHWAY FOR PROTEIN FOLDING

Identifying Transition State Structures or Intermediates

Determining which structures belong to the transition state ensemble (TSE) is a
difficult task and a vigorous subfield. Our discussion focuses on the two-state case,
in which a single transition state connects the folded and unfolded ensembles. The
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techniques we discuss are relevant to each transition present in more complex
scenarios. We first discuss means of selecting transition state conformations: un-
folding simulations, projection onto one or two reaction coordinates, validation
of putative transition states through calculation of Pfold, and path sampling. We
then discuss validation of transition state conformations: the interpretation of ex-
perimental � values (�exp) and the prediction of �sim values. Because of space
constraints we do not discuss the inverse approach, the use of �exp restraints to
generate TSEs.

CONFORMATIONAL CLUSTERING OF HIGH-TEMPERATURE TRAJECTORIES Unfold-
ing simulations are powerful tools (16). The Daggett group has used a cluster-
ing method for picking transition state structures that relies on the presence of a
large conformational change after the transition. They first compute the pairwise
distance matrix between all structures and produce a two- or three-dimensional
representation of the distance between each trajectory snapshot using multidimen-
sional scaling (68). Then, putative transition conformations prior to escape from
the native region are manually selected. Although Li et al. (68) modestly suggest
that this method is not rigorous, it clearly can be effective, providing a putative
chymotrypsin inhibitor 2 (CI2) TSE with a R = 0.94 correlation to 11 �exp values.

We note that the free energy landscape and the TSE can be altered by denatu-
rant, whether thermal, chemical, or force, and there may be significant differences
between the high-temperature and physiological free energy landscape (24, 36). At
sufficiently high temperatures the rapid unfolding events observed are for practical
purposes irreversible. Fortunately, in many cases the nature of protein unfolding
transitions appears largely temperature independent. The Daggett laboratory has
examined the temperature dependence for the engrailed homeodomain (En-HD)
and CI2 (18, 76). Mayor et al. (75) report that the En-HD transition states de-
termined at 100 and 225◦C were similar (the 100◦C transition state has R =
0.86 correlation to �exp). Another study reports that these two putative transition
state structures have a RMSDcα of 3.8 Å, more similar to each other than to their
respective starting structures (76). To study the temperature dependence for CI2
unfolding, Day et al. performed seven simulations (20 to 94 ns) at varying tem-
perature. The unfolding trajectories had a similar order of events. Whereas the
average number of tertiary contacts had large fluctuations, the transition states
were essentially the same (171 contacts at 498 K to 174 contacts at 373 K) (18).

What is the temperature dependence of unfolding pathways? Caflisch and
coworkers (10) report a weak temperature dependence of the free energy surface
for Beta3s. Pande and coworkers have observed similar unfolding landscapes for
high temperature unfolding ensembles of tryptophan zippers (C. Snow & V. Pande,
unpublished results). Thus, a crucial question is, Why, given the relatively large
free energy shift in the transition state induced by high temperature, are the struc-
tural properties obtained at high temperature so useful? A possible answer lies
in the relationship between native topology and folding mechanism. Given the
Hammond postulate, the transition state should increasingly resemble the native
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state at higher temperatures. The native topology is important for kinetics (see
above) and may typically be reflected in the transition state topology. Given these
trends, perhaps high-temperature transition states will deviate significantly only
for transition states that diverge strongly from the native topology.

PROJECTION ONTO REACTION COORDINATES In favorable cases, projection onto
one or several parameters, such as the fraction of native contacts present (Q),
can produce a free energy landscape that reveals clear differences between the
folded and unfolded states. Given a properly weighted equilibrium ensemble, and
an optimal projection, the density of states at the saddlepoint would reveal exactly
the free energy barrier height, and conformations at the saddlepoint could be
flagged transition state members. Both prerequisites are problematic. In the general
case, folding transitions cannot be reduced to two dimensions without overlap of
kinetically distinct conformations.

One hallmark of this effect is that simplified dynamics on the reduced landscape
do not reproduce the correct dynamics. Swope et al. (110) demonstrated altered
kinetics and non-Markovian behavior for a carefully produced state space in which
all possible native hydrogen bonding patterns in a small β-hairpin were resolved.
In a companion paper, a simple nine-state example reveals how non-Markovian
behavior arises on short timescales when nine microstates are lumped into three
macrostates (109). It is not trivial to construct order parameters meaningful for
kinetics, yet such order parameters are crucial for a Markovian description.

These challenges notwithstanding, accurate projection of simulations onto re-
action coordinates has been pursued by many researchers. For example, Onuchic
and coworkers studied several proteins by using Gō models. They demonstrated re-
versible Gō model folding for CI2, Src SH3, barnase, RNase H, and Che Y, qualita-
tively matching experimental observations (13). They successfully extended these
models to large proteins, dihydrofolate reductase, and interleukin-1β (12). Koga
& Takada (59) adopted and extended the Onuchic Gō models to a set of 18 small
proteins to test the predicted TSE and folding rates by projection onto Q. They
found topology-influenced rates that were roughly comparable to experiment, and
qualitatively reasonable �sim value predictions in about half of the systems. More
recently, they studied the folding of protein G and α-spectrin SH3 using a hybrid
potential that includes Gō character and sequence-specific physical bias (64) and
found qualitative agreement with experimental mechanism.

COMMITTOR PROBABILITIES: Pfold Large conformational transitions for proteins
are both slow and stochastic. Nevertheless, the direct computation of the trans-
mission coefficient (Pfold) for putative transition state conformations has become
possible in various cases. Pfold, defined as the probability that a conformation
reaches the folded state before it reaches the unfolded state (25), is computation-
ally expensive because, to compute this probability precisely, many simulations
are performed from identical coordinates with randomized initial velocities. The
relative error for the calculated Pfold from N trials scales with N−0.5. Thus 20 trials
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estimate the Pfold within 22% of the mean. Another difficulty is that the timescale
necessary for commitment to the free energy minima can be long. This sponta-
neous relaxation rate is related to the timescale for downhill folding scenarios and
the prefactor for transition state folding theories.

We expect topology and chain length to play an important role in the relaxation
time (61). For Gsponer & Caflisch (41), 16 of 60 Pfold simulations for Src SH3
required more than 100 ns to observe commitment, and 6 of 60 had not reached
either minimum after 200 ns. These are long commitment times considering their
simple no-viscosity implicit solvent but make sense in the context of a sizable β-
sheet protein. In contrast, Pande and coworkers (89) observed commitment times
under 5 ns for the 23-residue BBA5 in explicit and implicit solvent. Returning
to a large explicit water simulation, Daggett and coworkers (20) did not observe
commitment to either the native or unfolded state for initial CI2 structures within
the putative TSE (within 3 ns).

In comparison, Gō model Pfold calculations are tractable. Li & Shakhnovich (70)
used an all-atom Gō model to construct and verify a TSE for CI2 using 20 Pfold

calculations (N = 20) per putative transition state (800 total). Shakhnovich and
coworkers (7) also elegantly demonstrated reversible folding and unfolding for the
C-Src SH3 domain using a coarse-grained Gō model. Putative TSE members were
validated by calculation of 100 Pfold simulations for each initial model. Finally,
the Shakhnovich group has also developed a heavy atom Gō potential and recon-
structed the TSE for CI2 (70), protein G (47, 99), and the ribosomal protein S6 (46).

Computing Pfold values removes some of the uncertainty when selecting the TSE
members, ensuring that one does not select a transition state that is predisposed
to either free energy minimum. Although the results are insensitive to details of
the cutoffs inside minima, the gross definitions are still important. We must also
recognize that bias can influence the selection of putative transition conformations
and that conformations subject to �exp value restraints may lack the full variation
in orthogonal degrees of freedom such as the number of contacts, radius of gyration
(Rg), or RMSD (46).

Bolhuis et al. (6) have developed rigorous path sampling techniques that tackle
these issues directly. After a large ensemble of transition paths are constructed,
statistical analysis determines which conformations have Pfold = 0.5. An advan-
tage of this method is that researchers can obtain a TSE without presupposing a
reaction coordinate. No assumptions about the nature of the transition are neces-
sary; it is only necessary to describe cutoffs for folding and unfolding. Likewise,
clustering of MD ensembles into a Markovian model may allow the simultaneous
determination of all rates in the system and the identification of the TSE without
assignment of the reaction coordinate (102).

Experimental Means to Identify TSE Structures

EXPERIMENTAL PROBES OF THE TSE: � VALUES � values allow the interpretation
of experimental kinetics for a series of mutants in terms of ground state and
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transition state structure for two-state transitions (34). To produce well-defined
results, the mutations must perturb significantly the equilibrium free energy of
unfolding. The necessary size of this perturbation has been a recent topic of con-
tention (35, 91). The reliability of the � value at a given site can be improved
by making multiple mutations at a given site. Sosnick and coworkers (60) em-
ploy a continuum of energetic perturbations using clever chemistry to measure 	

values. Despite significant energy perturbation, the mutations should not perturb
structural properties. This may seem trivial given the plasticity of the hydrophobic
core of proteins (93). However, Burton et al. (9) found that a single-point mutation
can induce sizable changes in the transition state. Furthermore, proteins are co-
operative; the deletion of several amino acids can rapidly denature a protein. The
folded and unfolded thermodynamic minima have dramatically different structural
properties, but the free energy balance for unfolding, �Gu, is usually small for
two-state proteins of less than 100 residues.

VALIDATION OF PUTATIVE TRANSITION STATE STRUCTURES VIA � VALUES Com-
parisons of �sim and �exp values have been reported with correlation coefficients
as high as R = 0.94 (more than 11 residues) (68). Do high correlation coefficients
imply that we can predict �exp values? Gō models biased toward the native state
structure predict �exp values well. Accordingly, we ask to what extent � value cor-
relations reflect the information content of the native topology. Researchers desire
proof that a physical potential improves the predictive capabilities. To spur critical
assessment we must answer two questions: How difficult is it to predict �exp values
to a given correlation value, and to what extent does � value correlation validate
other simulation details?

Calculation of �sim values can be attempted by either a thermodynamic or
kinetic approach. To directly mimic experiment, we could, with sufficient sam-
pling, observe the folding and unfolding rate for each of the mutants of interest.
This kinetic method has been used in connection with Gō models (95) but has
not yet been applied to unbiased MD simulations. Until recently, estimation of
the folding rate for even a single system has been too computationally demand-
ing. Most work has employed the thermodynamic approach, simple arguments
relating the free energy of mutation to the deletion of methyl groups from the
hydrophobic core (93). Typically, estimates for the �G of mutation count the
contacts made in the transition and native ensembles with �sim = �NTS/�NN.
Various definitions of contacts have been used. For example, Li & Daggett (68)
count �N as the difference in the number of van der Waals contacts made by
the wild-type and the mutant residue, where two residues share a van der Waals
contact if two heavy atoms come closer than the sum of their van der Waals radii
plus 1 Å. The Daggett lab also employs an alternative approximate parameter,
the product of the fraction of native secondary structure (S2◦ ) and native tertiary
structure (S3◦ ), or S-value. The secondary structure content is averaged over the
preceding and following residues and is based on (ϕ,ψ) values, as described by
Daggett & Levitt (15). Tertiary structure is the ratio of the number of tertiary
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van der Waals contacts in the putative transition state to the number in the native
state.

The Daggett and Fersht laboratories led the way in the comparison of simulated
and experimental transition state structure. The first such study, characterizing
the CI2 transition state observed in high-temperature unfolding simulations (67),
produced a set of �sim values for 10 hydrophobic core mutants with a 0.12 average
deviation from �exp. A subsequent work reported that the average of four putative
transition state conformations yielded a R = 0.94 correlation (68). The CI2 TSE
had an R = 0.87 correlation between the S-values and the �exp values. In a
study of barnase, thermal denaturation S-values roughly correlated (R = 0.75) to
the �exp values (17, 69). Fulton et al. (38) presented the calculation of S-values
for two putative transition state models of FKBP12. A fair degree of variation
between the two models resulted in a R = 0.62 correlation between the average
S-values and the �exp values. If S-values were selected from either transition
state interchangeably and the two most problematic residues were neglected, the
correlation improved to R = 0.90 (38). In a practical test, the Daggett transition
state models have already been employed to successfully design a faster folding CI2
variant via transition state stabilization (62). Moving beyond simple heuristics for
calculating �sim, Pan & Daggett (81) computed CI2 thermodynamic �sim values by
free energy perturbation calculations upon the transition and denatured ensembles.
The quantitative comparison to experiment was good (R = 0.8 to 0.9). Clementi
et al. (13) have also used a thermodynamic approach to calculate �sim, measuring
the energy of mutation in the unfolded, folded, and transition state ensembles.

The most rigorous calculation of �sim values would be the prediction of both
thermodynamic and kinetic �sim values. Here, Brooks and coworkers (95) have
found excellent qualitative agreement for fragment B of protein A (R = 0.87),
although the small free energy barrier and the use of a single reaction coordinate
led to discrepancies.

Pathway Prediction and Description

The folding pathway is arguably the most interesting prediction associated with
folding simulations. As our ability to observe long timescale transitions improves, it
becomes increasingly important to clearly communicate the observed mechanism.
Qualitative descriptions of the folding pathway can only be loosely interpreted
compared with experiment. First, results found in folding simulations can be sen-
sitive to the analysis. For example, Swope et al. (110) produce several folding
mechanisms for the hairpin from protein G by varying their hydrogen bond defi-
nition. Second, there are semantic issues; a researcher might frame the discussion
of β-hairpin folding in terms of zippering, secondary versus tertiary contacts, or
diffusion-collision versus nucleation-condensation.

The collaborative effort between the Fersht experimental laboratory and the
Daggett simulation laboratory has shed light on an entire family of unfolding
mechanisms. The homeodomains, small three-helix proteins, exhibit a spectrum
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of folding processes, from concurrent secondary and tertiary structure formation
(nucleation-condensation mechanism) to sequential secondary and tertiary forma-
tion (framework mechanism) (40). They present putative transition state confor-
mations from high-temperature unfolding for En-HD, c-Myb, and hTRF1 (two at
both 373 and 498 K for En-HD; seven at 498 K for c-Myb; and two at 498 K for
hTRF1), and estimate βT values (0.83, 0.83, and 0.8, respectively) that roughly
agree with the experimental βT values (0.83, 0.79, and 0.90, respectively). Ex-
cluding the mutation of two charged residues, correlation coefficients of 0.79 and
0.74 for En-HD and c-Myb were obtained between the S- and � values. Gianni
et al. (40) report that folding of En-HD resembles the diffusion collision mecha-
nism more than folding of c-Myb or hTRF1 does because the helices are nearly
fully formed in the transition state. They do state that movements from diffusion-
collision to nucleation-condensation are not detected simply by the helical content
of the folding transition states but through analysis of whether the secondary and
tertiary structures are formed simultaneously (40). Given this strategy we feel it is
particularly important to generate a statistically meaningful number of transitions
to judge the relative timing of events between related molecules.

It is not trivial to compare simulated mechanism with experiment. Even in
the limit of perfect two-state behavior, we may draw a distinction between the
prediction of � values and the prediction of folding pathway or mechanism. For
instance, high � values do not necessarily indicate a critical role in nucleation
and low � values do not preclude the possibility that the residues are involved in
nucleation (47).

In the absence of common, quantitative definitions of mechanism, different re-
search groups are reminiscent of the allegorical blind men who encounter and at-
tempt to describe an elephant (possibly, by drawing two-dimensional projections).
Each observer may focus on a different aspect. Raw quantitative comparison of
trajectory data is difficult owing to the stochastic nature of the dynamics. The order
of “events” is a natural description of a mechanism, but an optimal description of
a mechanism should account for heterogeneity as well as the interplay between
secondary and tertiary contacts. An excellent and recent example comes from
protein A. Fersht and coworkers (92, 113) have qualitatively compared several
published simulation predictions of the protein A folding pathway with exper-
iment. None of the published atomistic simulations were completely consistent
with experiment, emphasizing the need for improved simulation predictions of
the folding pathway and improved quantitative means for comparing pathway
predictions.

The simulation community would greatly benefit from continuing efforts to-
ward rigorous prediction of experimental observables related to protein folding.
For example, the Tanford coefficient is the relative efficacy of denaturant upon the
transition state relative to the native state. Currently, this is roughly estimated via
the solvent-accessible surface area or the compactness. Native state hydrogen ex-
change also appears promising and complementary to � value analysis. Certainly,
an entire hierarchy of states with varied structure provides additional points of
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comparison for simulation. Direct prediction of spectroscopic properties is a promis-
ing direction. One example was provided by Shimada & Shakhnovich (99), who
reconcile apparently contradictory experimental kinetics measurements for protein
G by considering ensemble averages designed to mimic the reaction coordinate
for fluorescence experiments. Quantitative prediction helps verify simulations, but
also can shed light on the best interpretation of experiment.

Folding Dynamics from the Free Energy Landscape

CHALLENGES Through the knowledge of an accurate free energy landscape along
kinetically relevant degrees of freedom, it becomes possible to identify the stable
conformations (unfolded, folded, and any stable intermediates) together with the
transition state(s) connecting them. The knowledge of the free energy surface can
be directly related to thermodynamic quantities (the free energy barrier height) as
well as to kinetic information (the ratio between the folding rate and the unfolding
rate, or Keq).

RESULTS In the original landscape approach, as pioneered by Brooks and cowork-
ers (94), the free energy landscape or potential of mean force (PMF) is gen-
erated from the equilibrium population distribution. Because it is excessively
time-consuming to reach equilibrium for high-dimensional protein molecules with
conventional MD, simulations are performed with umbrella sampling. An addi-
tional potential (usually a quadratic or “umbrella” potential) is added to the original
Hamiltonian of the system to bias the sampling. When the bias is adjusted, the size
of the available conformational space can be reduced to expedite the equilibration
within the biased Hamiltonian. A series of biased simulations are recombined after-
ward to remove the bias in a mathematically strict way by the weighted histogram
analysis method (32). The population distribution P(q) then can be converted to
the free energy with F(q) = − ln P(q). With this approach, Brooks and cowork-
ers have obtained the free energy landscape and folding dynamics of the α-helical
protein A (4), the αβ-mixed GB1 (97, 98), and the mostly β Src-SH3, (96) with
numerous successful comparisons with experiment. We refer the reader to an ex-
cellent review (94).

Umbrella sampling studies produce informative free energy landscapes but
assume that degrees of freedom orthogonal to the surface equilibrate quickly.
The MD time needed for significant chain movement could significantly exceed
the length of typical umbrella sampling simulations (which are each typically
on the nanosecond timescale). However, in spite of this caveat, umbrella sampling
approaches have been successful. One explanation for this success lies in the choice
of initial conditions: Umbrella sampling simulations employ initial coordinates
provided by high-temperature unfolding trajectories. This is a recurring theme:
Without lengthy simulations, the initial conformations are crucially important,
and it appears that unfolding produces reasonable initial models.
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NEW SAMPLING METHODOLOGY The success of thermodynamic methods rests on
sampling the entire available phase space. In addition to the high dimensionality of
protein configuration space, kinetic trapping creates a major bottleneck. Although
umbrella sampling can partly overcome this difficulty by simulating multiple tra-
jectories at the same time, kinetic trapping or slow orthogonal degrees of freedom
may still dominate within each umbrella potential.

A number of techniques have been developed to overcome kinetic trapping.
Mitsutake et al. (77) have provided an excellent review of these generalized ensem-
ble methods. We focus on replica exchange molecular dynamics (REMD), which
has been widely used in protein folding simulations. In this approach, a number
of simulations (replicas) are performed in parallel at different temperatures. Af-
ter a certain time, conformations are exchanged with a Metropolis probability.
This criterion ensures that the sampling follows the canonical Boltzmann distri-
bution at each temperature. Kinetic trapping at lower temperatures is avoided by
exchanging conformations with higher temperature replicas. This method is easier
to apply than other generalized ensemble methods because it does not require a
priori knowledge of the population distribution.

After Sugita & Okamoto (108) demonstrated its effectiveness with a gas-phase
simulation of a pentapeptide Met-enkephalin, Sanbonmatsu & Garcı́a (90) obtained
the free energy surface of the same system using explicit water. With 16 parallel
replicas they observed enhanced sampling (at least ∼5 times greater sampling)
compared with conventional constant temperature MD. Because the method is
simple and because it is trivially parallelized in low-cost cluster environments, it
rapidly gained wide application. Berne and coworkers (121) applied this method
to obtain a free energy landscape for β-hairpin folding in explicit water using
64 replicas with more than 4000 atoms. With the equilibrium ensemble and the
free energy landscape in hand, they reported that the β-hairpin population and the
hydrogen bond probability were in agreement with experiments, and they proposed
that the β-strand hydrogen bonds and hydrophobic core form together during the
folding pathway.

If care is taken to fully reach equilibrium (88), REMD becomes powerful for
elucidating the folding landscape. For example, Garcı́a & Onuchic (39) applied
the method to a relatively large system, protein A. With 82 replicas for more
than 16,000 atoms with temperatures ranging from 277 to 548 K, and with ∼13 ns
MD simulations for each replica, they reported convergence to the equilibrium dis-
tribution with quantitative determination of the free energy barrier of the folding.

REMD was further developed to include exchanges in multidimensional Hamil-
tonian space in combination with umbrella sampling (107). It was also adapted to
a heterogeneous parallel cluster by multiplexing the replicas in each temperature
(88). Nevertheless, it suffers from one significant problem when it is applied to
significantly large systems. As can be inferred from the examples described above
(82 replicas for protein A versus 16 for Met-enkephalin), the major drawback of
the original REMD is the dependence of the number of replicas on the degrees of
freedom f in the system. To obtain a reliable result, each pair of adjacent replicas
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must have overlapping energy distributions (108). Because the average energy and
the fluctuation in the energy scale as Ē ∼ f kB T and δE ∼ √

f kB T , respectively,
the temperature difference of adjacent replicas scales as �T ∼ 1/

√
f . Thus, an

N times larger system requires
√

N times more replicas. As a remedy, alternative
Hamiltonian REMDs have been proposed in which replicas are generated by vary-
ing parameters other than the temperature, such as the degree of hydrophobicity of
the polymer chain (37), and by using a scaling parameter for selected energy terms
such as the dihedral energy and protein-protein nonbonded interactions (52).

Prediction of the Final Structure

STRUCTURE PREDICTION AS METHODOLOGY VALIDATION Applied native state
structure prediction has been a great challenge in theoretical structural biology,
and a number of different approaches have been proposed and applied to this end
(42). Here, we focus on structure prediction that adopts an MD approach. The main
purpose is not simply to predict the native structure, but to validate the methods,
particularly the force field. Standard potential sets have accurately identified the
native state for a growing menagerie of peptides and miniproteins. Direct relax-
ation to the native state remains a challenge for proteins of increasing size. As
simulation data for various proteins accumulate, we may realize the long-term
goal: refinement of the force field parameters for uniformly accurate prediction of
many properties beyond the folding characteristics.

PREDICTION OF THE NATIVE STATE Although the native structure of the protein
is governed not by potential energy but by free energy, regions of low potential en-
ergy usually constitute the native state ensemble. Such regions have been detected
simply by monitoring the potential energy in MD simulations. Jang et al. (51) re-
ported that such an approach with an implicit solvent model (GB/SA) found good
agreements between low-energy conformations and experimental native structures
for β-hairpin, β-sheet, and ββα-motif with RMSD values of the predicted struc-
tures as low as 1.36 Å. Snow et al. clearly identified native tryptophan zippers using
the OPLS all-atom force field (55, 56), and the OPLS united-atom force field pre-
dicted a nonnative free energy minimum (104). Similarly, Simmerling et al. (101)
demonstrated that this scheme could predict a stable structure for the Trp-cage
protein. A NMR structure determination reported an inspiring level of agreement
between the predicted and determined structures (101). In this report simulations
were performed at relatively high temperatures (325 to 400 K) to expedite the
search through the available conformational space. The kinetic trapping described
above becomes significantly less problematic at such high temperatures.

As the free energy is directly related to the canonical population distribution
at a given temperature, it is attractive to use REMD to look for the structure
with the most favorable free energy. Pitera & Swope (83) applied REMD to the
Trp-cage protein and reported that the global free energy minimum reproduced
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the NMR distance restraints. REMD was also used to compare different solvent
models. Zhou and coworkers (119, 120) applied REMD to both explicit and im-
plicit solvent models to obtain free energy surfaces in both models and reported
that GB continuum solvent models may predict an incorrect free energy global
minimum.

Direct structure prediction for larger structures faces a double obstacle: longer
folding timescales and the compilation of errors in force fields for large systems.
With larger proteins, force field errors should compound at least as fast as the
square root of the number of residues, whereas the stability only increases mod-
estly. In large systems, a direct search for the native structure using MD will be
problematic when, regardless of barrier height, diffusional search time exceeds
current computational power.

CONCLUSIONS

In the end, an understanding of complex biophysical phenomena will require com-
puter simulation at some level. Most likely, experimental methods will never yield
the level of detail that can today be reached with computer simulations. However,
the great challenge for simulations is to prove their validity. Thus, it is naturally the
combination of powerful simulations with quantitative experimental validation that
will elucidate the nature of how proteins fold.

How close are we to achieving this goal? In many ways, there has been great
progress. The ability to quantitatively predict rates, free energies, and structure
from simulations on the basis of physical force fields reflects significant progress
made over the past five years. It also draws attention to a new challenge. Even
the prediction of experimental observables, such as rates, within experimental
uncertainty does not prove that the simulations will yield correct insights into the
mechanism of folding. Indeed, recent work suggests that computational models
can both agree with experiment and disagree with each other (89).

We must therefore push the link between simulation and experiment further by
connecting the two with new observables, multiple techniques, and increasingly
strict quantitative comparison and validation of simulation methods. Without more
detailed experiments, we may not be able to sufficiently test current simulation
methodology and the trustworthiness of refined simulations may remain unclear.
Nonetheless, the ability to predict rates, free energies, and structure of small pro-
teins is a significant advance for simulation, likely heralding even more significant
advances over the next five years.
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