AT623 Syllabus

Spring 2020

Instructor: David Randall
Teaching Assistant: None

Introductory overview

• Where does boundary-layer meteorology fit in the big picture of atmospheric science?
 ▸ Dynamics across scales
 * Dynamics isn’t just large-scale dynamics
 * Small-scale dynamics is interesting and important in its own right
 * The interactions across scales are most interesting of all
 ▸ Momentum exchanges
 ▸ Moisture exchanges
 ▸ Energy exchanges
 ▸ Dissipation
 ▸ Air-sea interactions
 ▸ Air-land interactions
 ▸ Applications
 * NWP -- people live in the boundary layer
 * Air pollution dispersion
 * Agricultural meteorology
 * Aviation meteorology
 * Military applications
• Boundary layers in engineering applications
 * Viscosity
 * No slip
 * Shear and vorticity
 * Leaves of grass
• Characteristics of the atmospheric boundary layer
 ▸ Definition
 ▸ Turbulence
 ▸ Surface fluxes and bulk aerodynamic formulae
 ▸ “Stable” and “unstable” boundary layers
 ▸ The surface layer
 ▸ Mixed layers
The boundary layer top
- Entrainment across the boundary layer top
- The diurnal cycle of the boundary layer over land
- Stratocumulus clouds
- Shallow cumulus clouds
- Deep cumulus convection

- Coupling to the land surface
- Mixed layers in the ocean and lakes
- Benthic boundary layers
- Climatology of the surface fluxes of sensible heat, latent heat, and momentum

Introduction to turbulence in the boundary layer
- Definition of turbulence
 - Many interacting vortices
 - Chaos
 - Many scales
 - Energy cascades
 - How turbulence differs from waviness
- Preliminary discussion of the turbulence kinetic energy (TKE) equation, postponing the derivation until later
 - Reynolds averaging
 - Shear production
 - Buoyant production
 - Dissipation
 - Third moments
 - Pressure terms
 - Advection terms
 - “Storage” term

Where does turbulence come from?
- Shearing instability
 - Basic mechanism
 - The effects of stratification
 - Breaking waves
- Convective instability
 - What is buoyancy?
Rayleigh-Benard convection
Thermals and plumes
Cumulus instability
Cloud-top entrainment instability

Where do fluxes come from?
- Diffusion and mixing-length theory
- Mass fluxes
- Penetrative convection

The surface layer
- Dimensional analysis and similarity theory
- Monin-Obukhov similarity theory
- The logarithmic wind profile
- Surface roughness
- The bulk aerodynamic formulas
- The limits of similarity theory

The second and third moment equations
- Notation
- The Reynolds stress equation
- The TKE equation revisited
- Return to isotropy
- Scalar variances and covariances
- The connection between gradient production and dissipation

Mixed layers
- What is mixing, and what is mixed?
- Linear flux profiles
- Diffusion versus advection
- Ekman layers
- Entrainment across the top of a mixed layer

Ekman layers
- Force balance perspective
• Energy perspective
• Spirals
• Ekman “pumping”

Stratocumulus-capped boundary layers
• Buoyancy in cloudy layers
• The buoyancy flux profile
 ‣ Cloud base
 ‣ Radiation at the cloud top
 ‣ Cloud-top entrainment instability

Partly cloudy boundary layers
• Basic concepts
• Sommeria and Deardorff
• Buoyancy fluxes in partly cloudy layers

Coupled mixed layers
• Sloping edges
• ENSO

Linking higher-order closure to mass fluxes
• KPP
• EDMF
• Assumed distributions with higher-order closure
• Entraining and detraining plumes
• Diffusion and mass fluxes as limits that come from the variance equation
• Closure for sigma
• Double Gaussians

Large eddy simulations
• History
• Current applications

Interactions of the boundary layer with deep cumulus convection
• Cloud roots
• Updrafts
• Downdrafts
• Cold pools
• The effects of deep convection on the surface fluxes
• Elevated nocturnal convection

Frontiers

• Topographic effects
• Urban effects and urban LES
• The grey zone