ATS 150: Global Climate Change

Spring 2018

CLASS MEETS: Tuesday and Thursday from 9:30-10:45 in Wagar 232

TEXTBOOK: Global Warming, Understanding the Forecast, by David Archer. Other readings will be distributed each week through the class website

PROFESSOR: Jeff Pierce, Atmospheric Science

Office hour: Tuesday 10:45-11:45 in room A102F of the Engineering Building. You can email me anytime (jeffrey.pierce@colostate.edu), and I’ll try to answer quickly.

TEACHING ASSISTANT:

Will Lassman (wlassman@rams.colostate.edu) is the TA for this class. He will have office hours W 10-11 & Th 8:30-9:30 in room A102F of the Engineering Building.

CLASS WEBSITE: CSU Canvas (http://info.canvas.colostate.edu)

I will distribute the notes for every lecture on there ahead of time. This is where homework will be assigned. Please take a few minutes to browse through the site this week so you know what's on there and where to find things. You don't have to bring the book (ever), but I make printable handouts of all the notes with four slides to a page so you can make notes in the margins.

GRADING:

Your semester grade will be computed as follows:

- 1/4 Exam #1 (in class, tentatively Feb 20)
- 1/4 Exam #1 (in class Apr 5)
- 1/4 Final Exam (during Finals Week)
- 1/4 Homework (average of 4 assignments plus weekly readings)

CLASSROOM DEMONSTRATIONS AND ONLINE INTERACTIVE TOOLS:

Occasionally, we will do labs or demonstrations to illustrate how physical climate principles work. We will also use interactive web tools to do experiments related to climate science and these may be useful for calculations in the homework.

WEEKLY READINGS:

Each week, you are expected to read 3 articles on climate from the news, blogs, or journal articles, and you will turn in several sentences to Canvas describing your reading. I will generally reserve class time each week for students to discuss or ask questions about what they read that week.

HOMEWORKS:

There will be 4 homework assignments throughout the semester.
SCHEDULE:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Science, Impacts, Potential Solutions</td>
<td></td>
</tr>
<tr>
<td>Earth System Overview</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Energy & Electromagnetic Radiation</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Layer Model of the Greenhouse Effect</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Greenhouse Gases, Lapse Rate</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Energy Budget of the Earth</td>
<td>Chapter 5</td>
</tr>
</tbody>
</table>

EXAM #1 (in class tentatively 2/20)

- Climate Sensitivity & Feedback
- Climates of the Past
- Fossil Fuel & Carbon Cycle (Scott Denning lectures, 4/20, 4/22)
- Future Climate Change
- Climate Change Impacts
- Air pollution and climate
- Climate and health (Brooke Anderson lecture, 3/29)

EXAM #2 (in class; tentatively 4/5)

- Energy & Economics
- Climate Change Economics (Jesse Burkhart lecture, 4/26)
- Climate Change Policy (Michele Betsill lecture, 5/1)
- Wrap-up

FINAL EXAM (DATE AND TIME)

This course will adhere to the CSU Academic Integrity Policy as found on the Student’ Responsibilities page of the [CSU General Catalog](#) and in the [Student Conduct Code](#).

At a minimum, violations will result in a grading penalty in this course and a report to the Office of Student Resolution Center.

CSU Student Honor Code, approved by ASCSU and CSU faculty and staff in 2009:

As a student at Colorado State University, I recognize my active role in building a Campus of Character. This includes my commitment to honesty, integrity, and responsibility within the campus community. As such, I will refrain from acts of academic misconduct.