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ABSTRACT: The patterns associated with the top-of-the-atmosphere radiative response R to surface temperature 7 are
typically explored through two relationships: 1) the spatially varying radiative response to spatially varying changes in tem-
perature (AR/AT;) and 2) the spatially varying radiative response to global-mean changes in temperature (AR/AT). Here,
we explore the insights provided by an alternative parameter: the global-mean radiative response to changes in spatially
varying temperature (AR/AT;). The pattern AR/AT; indicates regions where surface temperature covaries with R and thus
provides a statistical analog to the causal response functions derived from atmospheric Green’s function experiments. The
pattern can be transformed so that it can be globally averaged and thus indicates the local contribution to the global feed-
back parameter. The transformed version of AR/AT; corresponds to the pattern in surface temperature whose expansion
coefficient time series explains the maximum fraction of the covariance between R and 7;. It explains roughly the same
fraction of internal variability in R as that explained by the Green’s function approach.

We focus on the physical insights provided by AR/AT; when it is estimated from regression analyses of monthly mean ob-
servations. Consistent with the results of Green’s function experiments, the observational analyses indicate negative contri-
butions to the global internal feedback parameter over the western Pacific and positive contributions over the southeastern
tropical Pacific. Unlike the results of such experiments, the analyses indicate notable negative contributions to the global
feedback parameter over land areas. When estimated from observations, temperature variability over the land areas ac-
counts for ~70% of the negative global internal feedback, whereas variability over the southeastern tropical Pacific re-
duces the global-mean negative internal feedback by ~10%.
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1. Introduction reasons for this. One, the amplitude of local feedback pro-
cesses depends on the local temperature change (Armour
et al. 2013). If temperature does not change at a given loca-
tion, then the local feedbacks operating at that location will
not be “activated” and thus will not contribute to A. Two, the
amplitude of local feedback processes may vary nonlinearly

with local conditions. For example, snow and sea ice feed-

The response of the climate system to radiative forcing can
be modeled as linearly proportional to the change in surface
temperature, such that

N=F+R~F + AT, (1)

where F is the global-mean radiative forcing, R ~ AT is the
global-mean radiative response, N is the global-mean top-of-
the-atmosphere (TOA) radiative imbalance, T is the global-
mean surface temperature anomaly, and A is the linearized
global climate feedback parameter, where stabilizing feedbacks
are taken to be negative (e.g., Hansen et al. 1997). If the varia-
bles in Eq. (1) are a function of time, then the global feedback
parameter can be expressed as A =~ [A(N — F)/AT], where
A denotes the differences in a parameter with time. In the
case where the global-mean radiative forcing F is cons-
tant, the global feedback parameter can be estimated as
A =~ (AN/AT) = (AR/AT) (e.g., see Sherwood et al. 2020
and references therein).

The radiative damping term AT depends not only on the
global-mean surface temperature change but on the spatial
pattern of the temperature change as well. There are several
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backs depend on the existing snow and sea ice coverage
(Boer and Yu 2003). Three, the amplitude of local feedback
processes depends on remote temperature changes (e.g.,
Andrews et al. 2015; Gregory and Andrews 2016; Zhou et al.
2016, 2021; Dong et al. 2019, 2021; Andrews and Webb
2018; Andrews et al. 2022). For example, relatively large
warming over the western tropical Pacific is associated with
rising motion locally and subsidence elsewhere. If the subsi-
dence occurs over a region of marine stratus and stratocu-
mulus clouds such as the eastern tropical Pacific, then the
low cloud feedbacks operating over such regions may be ac-
tivated by warming far removed from the stratus decks
(Dong et al. 2019; Andrews and Webb 2018; Andrews et al.
2022; Myers et al. 2023). The dependence of the radiative
damping term on the spatial pattern of temperature change
is referred to as the “pattern effect” on radiative feedbacks
(e.g., Stevens et al. 2016; Gregory and Andrews 2016).

The pattern effect is important since it leads to time variabil-
ity in climate sensitivity. Notably, the large warming over the
western tropical Pacific juxtaposed against weak warming/
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cooling over the eastern tropical Pacific over the past few deca-
des is thought to have led to a suppression of positive low cloud
feedbacks over the eastern tropical Pacific and thus a larger
negative global feedback parameter (e.g., Andrews et al. 2015;
Gregory and Andrews 2016; Zhou et al. 2016, 2017; Dong et al.
2019; Andrews and Webb 2018; Andrews et al. 2022; Myers
et al. 2023). It follows that the global feedback parameter is ex-
pected to become less negative—and thus, the climate sensitiv-
ity is expected to increase—when the eastern tropical Pacific
warms (e.g., Alessi and Rugenstein 2023).

The pattern effect has been investigated extensively in numer-
ical simulations using two primary approaches. In one approach,
the global feedback parameter is calculated in numerical simula-
tions forced with different patterns of temperature change. The
difference in the global feedback parameter between a simula-
tion forced with, say, recent observed changes in SSTs and a
simulation forced with abrupt 4x carbon dioxide (CO,) forcing
provides insight into the role of recent SST trends on climate
sensitivity (e.g., Andrews et al. 2015, 2022; Andrews and Webb
2018). In a second approach, the contribution of regional tem-
perature changes to the global feedback is assessed by 1) forcing
a numerical model with surface temperature patches restricted
to specific regions of the World Ocean and then 2) determining
the resulting changes in the TOA radiative flux (e.g., Zhou et al.
2016, 2017; Dong et al. 2019; Bloch-Johnson et al. 2024). The lat-
ter so-called Green’s function approach was used in Branstator
(1985) and Barsugli and Sardeshmukh (2002) in their analyses of
the atmospheric response to tropical SST variability. It has been
adopted in recent years to assess the impact of regional tempera-
ture changes on radiative feedbacks (e.g., Zhou et al. 2017; Dong
et al. 2019; Bloch-Johnson et al. 2024; Zhang et al. 2023).

The relationships between the spatially varying tempera-
ture field and radiative fluxes have received relatively little at-
tention in observations. Ceppi and Gregory (2017) probed the
observed relationships between the spatially varying radiative
fluxes and the global-mean static stability. Zhou et al. (2017)
compared the output from their Green’s function experiments
to the regression of observed global-mean cloud radiative ef-
fects onto local temperature. Myers et al. (2023) explored the
observed relationships between spatially varying cloud radia-
tive effects and various cloud-controlling factors. We are un-
aware of an observational study that has explicitly quantified
the linkages between the spatially varying temperature field
and the global-mean radiative feedback.

The primary goals of the current study are to 1) introduce a
regression-based parameter for exploring the relationships be-
tween the spatially varying temperature field 7; and the global-
mean radiative response R, 2) compare the radiative response
indicated by the regression-based parameter with that provided
by Green’s function experiments, and 3) explore the physical
insights provided by the regression-based parameter when it is
applied to observations and numerical output. Two notable re-
sults include the following: 1) When applied to observations,
the regression-based parameter indicates large positive contri-
butions to the global internal feedback parameter over the
eastern tropical Pacific and negative contributions over land
areas, and 2) when applied to the output from a control simu-
lation run on a coupled atmosphere/ocean climate model, a
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transformed version of the parameter explains roughly the
same fraction of internal variability in R as that explained by
the output from a Green’s function experiment run on the
same model. Section 2 outlines the simple regression-based pa-
rameter; section 3 probes the physical insights provided by es-
timating the parameter in 25 years of Clouds and the Earth’s
Radiant Energy System (CERES) and ERAS observations;
section 4 derives a transformed version of the parameter that
indicates the local contributions to the global-mean internal
climate feedback; section 5 provides an interpretation of the
regression-based parameter in the context of maximum covari-
ance analysis and partial least squares regression, compares
the radiative response predicted by the parameter with that
derived from Green’s function experiments and principal com-
ponent analysis, and assesses the reproducibility of the param-
eter in coupled-climate models; section 6 provides a discussion
and summary of the results.

2. Definitions of local climate feedbacks

The spatially varying relationships between surface temper-
ature and the TOA radiative fluxes are commonly assessed
using two different parameters (e.g., see discussions in Feldl
and Roe 2013; Bloch-Johnson et al. 2020; and Hedemann et al.
2022):

1) The rate of change in the spatially varying TOA radiative
response R; relative to the rate of change in the spatially
varying surface temperature 7;:

AR,
L _ i
NS @

where the subscript i denotes a spatially varying field,
R; = N; — F;, and the superscript L denotes that the rela-
tionship is based on local fluxes and local temperature;

2) The rate of change in the spatially varying TOA radiative
response R; relative to the rate of change in global-mean
temperature 7:

AR,
T _ i
Ai AT’ (3)

where the superscript 7 denotes that the relationship is based
on global-mean temperature. Results based on AI-L may be
viewed as reflecting local feedbacks (e.g., Armour et al. 2013);
results based on A] may be viewed as reflecting local contri-
butions to the global feedback parameter (Andrews et al.
2015).

Both A" and AT are widely used to explore the spatially varying
covariability between surface temperature and radiative fluxes in
climate models: The parameter A” yields information about the
covariability between the radiative fluxes and surface temperature
at a specific location, whereas the parameter A! yields information
about the covariability between the radiative fluxes at a specific
location and the global-mean surface temperature. Neither
method provides information about the linkages between the
spatial patterns of temperature variability and the global feed-
back parameter: The local feedbacks indicated by AL do not
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translate to variations in the global-mean radiative flux since,
at any given location, atmospheric heat transport can influ-
ence R; and T; in different ways. The relationships indicated
by AT are based on global-mean rather than local temperature
and thus by construction do not reveal information about the
spatial structure of the temperature variability.

To explore the spatial patterns of temperature variability
associated with variations in the global-mean radiative flux,
we explore here the rate of change in the global TOA radia-
tive response R relative to the rate of change in local tempera-
ture T, that is, we define

r _ AR

A=A @)
where R = N — F and the superscript R denotes that the re-
gression is based on the global-mean TOA radiative imbal-
ance. As is the case for A7, the relationships indicated by AR
may be viewed as local contributions to the global feedback
parameter, but unlike A and A7, the parameter AF by con-
struction reveals covariability between local surface tempera-
ture changes and the global-mean radiative imbalance.

3. Application to observations

Here, we compare the insights provided by the two widely
used measures of regional feedbacks A* and A with those pro-
vided by AR in monthly mean observations. Radiative fluxes are
provided by the CERES Energy Balanced and Filled Top-
of-Atmosphere Edition 4.2.1 (Loeb et al. 2018, 2022); 2-m near-
surface temperatures are obtained from ERAS (Hersbach et al.
2020). Results are based on roughly 25 years of monthly data
over the period March 2000-December 2024. The CERES
Edition 4.2 data combine retrievals from Terra (March 2000~
June 2002), Terra and Aqua (July 2002-March 2022), and
NOAA-20 (April 2022-December 2024). The ERAS 2-m tem-
perature data are not strictly speaking observations but bear
close resemblance to the in situ and remotely sensed tempera-
ture used in the ERAS assimilation scheme (Hersbach et al.
2020). The patterns derived from the coarser HadCRUTS sur-
face temperature data (Morice et al. 2021) are qualitatively in-
distinguishable from those based on ERAS. Results based on
numerical output are explored in section 5.

In the case of observed internal feedbacks, the parameters
AL, AT and AR can be estimated from linear regression as fol-
lows (e.g., Gregory et al. 2004):

A =B
77

oo RT
T
RT,

where all variables are departures from their seasonally vary-
ing climatological mean values and the overbars denote the
time mean. The terms on the rhs in Eq. (5) correspond to the
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linear least squares best fits between the corresponding predictor
temperature time series and predictand radiative response time
series. For example, the linear least squares best fit of R to T; is
given as the covariance between R and 7; divided by the vari-
ance of T;. The key assumption when using linear regression to
estimate A is that all variations in the independent variable—in
this case temperature—influence the dependent variable. In
practice, variations in the temperature field include measurement
error and internal variability that is not directly related to varia-
tions in the radiative flux. As such, the regressions in Eq. (5) are
biased toward zero and thus underestimate the actual values; i.e.,
they are susceptible to regression dilution bias (e.g., Frost and
Thompson 2000). Regression dilution bias influences the ampli-
tudes of internal feedback parameters calculated using regression
analysis (e.g., Proistosescu et al. 2018; Dessler and Forster 2018;
Gregory et al. 2020). It does not influence the sign of the regres-
sion and thus does not change the sign of the patterns indicated
here. It also does not influence the covariance which—as dis-
cussed in sections 4 and 5—is important for characterizing the
spatially varying contribution of the temperature field to the
global radiative response.

We estimate AF, AT, and AR by applying Eq. (5) to the
CERES TOA radiative flux and surface temperature data.
In all cases, we remove the long-term mean seasonal cycle
and linear trends from the data as a function of location be-
fore computing the regression coefficients. Note that we as-
sume detrending N removes the forced signal from the data
to form R (e.g., Dessler and Forster 2018). As noted below, we
also reproduced key results by forming R as N — F, where F is
the radiative forcing estimate provided by the IPCC AR®6.
Since the results are based on monthly mean, detrended
anomalies, they should be viewed as reflecting the feedbacks
between temperature and radiation that arise from internal
variability, rather than the feedbacks that arise in response
to climate change (e.g., Dessler and Forster 2018; Lutsko
and Takahashi 2018; Sherwood et al. 2020; Rugenstein and
Armour 2021). All radiative fluxes are positive downward so
that positive correlations indicate regions where anomalously
warm conditions are associated with anomalously downward
radiative fluxes (and thus suggest positive feedbacks between
temperature and the radiation fields), and vice versa.

Figure 1 shows the relationships between the TOA radiative
flux and surface temperature revealed by AX (left column) and
Al (right column). The top panels show results for the net TOA
radiative fluxes; the middle and bottom panels show results for
the shortwave and longwave components of the fluxes, respec-
tively. The relationships between R; and 7; indicated by AF are
predominantly positive across much of the globe (Fig. la):
Months with anomalously downward local radiative fluxes are
generally associated with anomalously warm local conditions,
and vice versa. The most pronounced positive regression coeffi-
cients are found in the western Pacific warm pool and in regions
of marine stratus and stratocumulus clouds off the western
coasts of North America, South America, Spain, and southern
Africa. The relationships indicated in Fig. 1a do not necessarily
indicate regions that are important for the global feedback
since 1) at a given location, the atmospheric heat transport can
influence R; and 7; in different ways, and 2) the two-way coupling
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FIG. 1. (left) Regression of local TOA radiative fluxes R; onto local surface temperature anomalies 7; for (a) net fluxes, (b) the
shortwave component of the fluxes, and (c) the longwave component of the fluxes. (right) As in (left), but for the regression of local
TOA radiative fluxes R; onto global-mean surface temperature 7. Results are based on monthly mean, detrended values of CERES

radiative fluxes and ERAS 2-m temperature.

between radiation and temperature is pronounced at local
scales, which violates the assumption in least squares regression
that the dependent variable R; responds to the independent var-
iable T} but not the other way around (see also Proistosescu
et al. 2018; Bloch-Johnson et al. 2020; Hedemann et al. 2022).
The positive regression coefficients between R; and 7; indi-
cated by Al arise primarily from variations in the shortwave
components of the fluxes (Fig. 1b). The positive shortwave
regression coefficients are partially offset by negative long-
wave regression coefficients over most of the globe, especially
over regions of deep convection in the tropics. The most nota-
ble exceptions are found in areas of marine stratus and
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stratocumulus clouds over the western coasts of the Americas
and Africa (cf. Figs. 1b,c). Both the shortwave and long-
wave regression coefficients are dominated by changes in
cloud radiative effects (not shown). The east-west dipole in the
shortwave and longwave regression coefficients in the western
tropical Pacific reflects an eastward shift in the region of deep
convection and their associated shortwave and longwave cloud
radiative feedbacks during months when the tropical Pacific is
anomalously warm (as is the case during the warm phase of the
ENSO phenomenon).

Results based on A! (right column) provide a very different
impression of the relationships between the TOA radiative
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imbalance and surface temperature. For the most part, the re-
gression coefficients are negative over much of the globe, consis-
tent with the dominance of the Planck feedback (Fig. 1d).
Notably, the positive relationships between the radiative fluxes
and surface temperature indicated by AX off the western coasts
of the Americas and Africa are not apparent in A!. The short-
wave and longwave components of the regression coefficients
(Figs. le,f) are consistent with the changes in clouds associated
with the ENSO phenomenon and arise at least in part since
ENSO is correlated with global-mean temperature 7" and thus
influences the covariance in Eq. (5).

Taken together, the results in Fig. 1 provide information about
the covariability between local radiative fluxes and local temper-
ature (left) and between local radiative fluxes and global-mean
temperature (right), but neither methodology provides informa-
tion about the relationships between the global-mean radiative
flux and local temperatures. Thus, neither methodology high-
lights regions where local surface temperature variability is
strongly related to variations in global-mean radiative flux.

Figure 2 shows results based on AF, i.e., the regression of R
onto 7; [Eq. (5)]. As is the case for results based on A/, the re-
gression coefficients given by AR are negative across most of
the globe, consistent with the Planck feedback. In contrast to
results based on A7, the results based on AX lend themselves
to straightforward physical interpretation. The largest nega-
tive regression coefficients arise in regions of deep convection
in the western tropical Pacific, the South Pacific convergence
zone, the ITCZ, and the central Indian Ocean (Fig. 2a). The
largest positive regression coefficients are found in the vicinity
of the large marine stratocumulus deck to the west of Peru
and Chile.

As discussed later in section 5, the regression coefficients in-
dicated by AR may be viewed as a statistical analog to the out-
put of simulations run using the Green’s function approach
(e.g., Bloch-Johnson et al. 2024). That is, they indicate regions
where local surface temperature variability covaries with the
global-mean radiative response. However, there is a key differ-
ence between the interpretation of results derived from AR and
the Green’s function approach: The results derived from AR
arise not only from the relationships between R and local tem-
perature but also from the relationships between R and temper-
atures at locations that covary with local temperature. For
example, the negative values of AX over the western tropical Pa-
cific may arise from local negative feedbacks or from negative
feedbacks occurring over locations where the temperature field
covaries with that in the western tropical Pacific. In contrast,
the changes in R indicated by the Green’s function approach
arise entirely from the prescribed changes in SSTs (or the atten-
dant free-running changes in land surface temperature). The re-
lationships between results based on regression analysis and the
output from Green’s function experiments are discussed in
more detail in section 5.

Despite the differences between the regression-based and
Green’s function approaches, the primary features in Fig. 2a
are clearly consistent with our understanding of spatially vary-
ing climate feedbacks. The negative regression coefficients
over the Maritime Continent are robust in all existing Green’s
function-type experiments and are consistent with negative
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Regression of Ronto T, (A)
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FIG. 2. Regression of global-mean TOA radiative fluxes R onto
local surface temperature anomalies 7; for (a) net fluxes, (b) the
shortwave component of the fluxes, and (c) the longwave compo-
nent of the fluxes. Results are based on monthly mean, detrended
values of CERES radiative fluxes and ERAS 2-m temperature.

feedbacks between surface temperature anomalies and the
global radiative response in regions of atmospheric deep con-
vection (e.g., Fig. 5a in Dong et al. 2019; Fig. 2 in Bloch-Johnson
et al. 2024). The positive coefficients to the west of South
America are similarly found in most Green’s function-type
experiments and are consistent with positive local feedbacks as-
sociated with marine stratus and stratocumulus clouds (Klein
and Hartmann 1993; Wood and Bretherton 2006; Andrews et al.
2015; Zhou et al. 2016; Ceppi and Gregory 2017; Andrews and
Webb 2018; Dong et al. 2019; Myers et al. 2021). The absence
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FIG. 3. As in Fig. 2a, but for (a) detrended annual-mean data, (b) monthly mean data where the forced signal in the global-mean radia-
tive flux is removed by subtracting the radiative forcing estimate provided in chapter 7 of the IPCC Sixth Assessment Report, (c) de-
trended monthly mean data for April-September, and (d) detrended monthly mean data for October-March.

of positive regression coefficients over other regions of marine
stratus and stratocumulus clouds—such as the west coast of
North America—is notable. It suggests that the positive feed-
backs between SSTs and the radiative fluxes in such regions are
offset by the covariability between the temperature field and
negative feedbacks arising elsewhere.

The primary features in Fig. 2a—namely, the negative values
over the western tropical Pacific and positive values over the
eastern tropical Pacific—are not sensitive to details of the analy-
sis procedure. They are reproducible in analyses based on
annual-mean (rather than monthly mean) versions of the data
(Fig. 3a); when the analyses are repeated for subsets of the data
corresponding to the months of April-September (Fig. 3c) and
October-March (Fig. 3d); and in the relationships between
global-mean CERES cloudy-sky fluxes and local SSTs based on
a much shorter data record (Zhou et al. 2017). They are repro-
ducible when the forced signal in the global-mean radiative flux
is removed not by detrending R (as done in Fig. 2a) but by sub-
tracting the radiative forcing estimate provided in chapter 7
of the IPCC Sixth Assessment Report (Forster et al. 2021)
(Fig. 3b). They are statistically significant. As shown in Fig. Al
in the appendix, the ¢ scores associated with the regression coef-
ficients in Fig. 2a exceed the 95% significance level over the

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/29/25 10:52 PM UTC

western tropical Pacific, tropical South America, and the equato-
rial regions of Africa. They exceed the 99% significance level
(¢ scores exceed 4) over the southeastern tropical Pacific (see the
appendix for details).

The shortwave components of AR are generally positive
(Fig. 2b), consistent with higher-than-normal surface tempera-
tures during periods of increased globally averaged shortwave
absorption. In contrast, the longwave components of AR are
generally negative (Fig. 2¢), consistent with increased globally
averaged emission to space when temperatures are higher
than normal. The region of net positive coefficients to the west
of South America derives from positive shortwave coefficients
that are not offset by negative longwave coefficients. As is the
case for results based on A" and A!, the east-west dipole in
shortwave radiative feedbacks in the central Pacific is consis-
tent with the signature of ENSO in tropical clouds (e.g., Park
and Leovy 2004) and tropical radiative fluxes (e.g., Ceppi and
Fueglistaler 2021).

Overall, the primary oceanic features in AR bear strong re-
semblance to those derived from Green’s function-type experi-
ments, notably the positive contributions to the global internal
feedback parameter over the eastern tropical Pacific and the
negative contributions over the western tropical Pacific. In the
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next section, we quantify the spatially varying contributions of
the temperature field to the global internal feedback parameter,
and provide evidence that land surface temperatures also play
an overlooked but seemingly important role in driving the
global internal climate feedback.

4. Contributions to the global-mean internal
feedback parameter

The global internal feedback parameter can be estimated by
regressing detrended, monthly mean values of R onto T (e.g.,
Dessler and Forster 2018). Itis A ~ —1.1 Wm 2K ! when es-
timated from 25 years of CERES and global-mean 2-m tem-
peratures from ERAS. In the case of the widely used spatially
varying parameter A7, the global internal feedback parameter
can be recovered by simply taking the global average of AT
(e.g., Andrews et al. 2015; Hedemann et al. 2022). That is,

RT\ RT
= (50

where the brackets denote the global average.

In the case of the spatially varying parameter AX introduced
here, the global internal feedback parameter cannot be directly
recovered from AR since the denominator in the regression is a
function of location [Eq. (5)]. The global feedback parame-
ter can be recovered from the regression coefficients A if
they are first weighted by the ratio of the local to global-
mean temperature variance TL-Z/ T2, that is,

T? RT, T? RT, RT
/\R i — Lo i — i — —
‘7 T o
1

where again the brackets denote the global average. We thus
define a weighted local feedback parameter

g (6)

that provides a form of AR that can be globally averaged to re-
cover the global-mean feedback. Physically, the parameter L;
provides a quantitative estimate of the contribution of surface
temperature variability over any given region to the global-
mean internal feedback parameter. Statistically, the parameter
may be thought of in two ways: 1) as the parameter AR
weighted by the ratio of the local to global-mean temperature
variances or 2) as the covariance between R and T; normalized
by the variance of 7. Note the close analogy between A! and
L;: The former has RL_T in the numerator; the latter has R_Tl in
the numerator; and both have 77 in the denominator.

Figure 4a shows AR (reproduced from Fig. 2a), Fig. 4b

shows \/ﬁi/ T? (i.e., the square root of the weighting applied
to AR), and Fig. 4c shows the weighted parameter L,. In gen-
eral, weighting AR by the local temperature variance acts to
increase the amplitude of the relationships between R and T;
at high latitudes, especially over the continental areas (cf.
Figs. 4a,c). That is because the regression coefficient AR is in-
versely proportional to the amplitude of the predictor time
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Regression of Ronto T, (A.)
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FIG. 4. (a) The local parameter AL-R reproduced from Fig. 2a.
(b) The standard deviations of local temperature relative to global-
mean temperature. (c) The form of the local parameter AR (L;) that
can be globally averaged to recover the global-mean feedback
parameter. Results are based on detrended values of monthly mean
CERES radiative fluxes and ERA5 2-m temperature. The boxes
indicate identically sized regions used in Table 2: 90°-155°E and
10°N-20°S in the western tropical Pacific and 125°-70°W and 5°N-
35°S in the eastern tropical Pacific.

series 7T;, whereas the covariance L; is directly proportional to
the amplitude of 7;. The inference is that the contribution of lo-
cal temperatures to the global-mean radiative response depends
on the amplitude of the local temperature anomaly which—in
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TABLE 1. Contribution of temperature over indicated regions to
the global-mean internal feedback, where the local contribution is
found as L, = (RT,/T?) and T; corresponds to the temperature
averaged over the region indicated in the first column. Second
column indicates the local contribution to A; third column indicates
the contribution multiplied by the corresponding area of the globe;
fourth column indicates the corresponding correlations and t-scores,
where bold indicates t-scores significant at the two-tailed 95% level.
All analyses are based on detrended, monthly mean data. Degrees of
freedom are assessed taking into account the autocorrelation of the
respective time series.

Local Contribution
contribution (weighted by
to % of globe)

Region AMWm™?)  (Wm?) r(R, Ti) (¢ score)
Globe -11 -11 r = —0.25 (3.6)
Global ocean -0.5 -03 r=—0.14 (1.9)
Global land —2.4 -0.8 r=-028 4.3)
Eastern tropical +2.1 +0.1 r= +0.19 (2.5)

Pacific
Western tropical -2.1 -0.1 r= —0.33 (4.8)
Pacific

the case of internal variability—is proportional to the local tem-
perature variance. The large covariances over the continents in-
dicate the prominent contribution of internal variability over
land regions to monthly variations in R. The most prominent
positive regression coefficients in both the unweighted (Fig. 4a)
and weighted (Fig. 4c) forms of the regression coefficients are
located off the western coast of South America.

Table 1 summarizes the values of L, for several key area aver-
ages. The second column indicates the contribution of surface tem-
perature variability over the indicated region to the global-mean
internal feedback parameter, the third column indicates the contri-
bution weighted by the fractional area of the globe, and the last
column indicates the correlations, ¢ scores, and significance based
on a two-tailed test of the ¢ statistic after accounting for the auto-
correlations in the time series. The key results are the following:

e The negative contributions of the high-latitude continents

to L; are not statistically significant at the gridpoint scale

(Fig. Al), but they are highly significant when averaged

over all land areas (Table 1). The globally averaged land

surface temperature accounts for roughly 70% of the global-
mean negative internal feedback of —1.1 W m ™2

Globally averaged ocean temperatures (based on ERAS

2-m surface temperature over ocean areas) account for only

about 30% of the global negative internal feedback, in part

because the ocean areas are marked by competing regions of
positive and negative feedbacks, and by small monthly surface
temperature variances relative to land areas.

e Over equal-sized areas, the positive contributions to the
global-mean internal feedback from the southeastern tropi-
cal Pacific and the negative contributions from the western
tropical Pacific are comparable in amplitude.

The results in Fig. 4c and Table 1 highlight two key results
that are not emphasized in Green’s function experiments run on
atmospheric models: 1) The land areas make a prominent
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contribution to the global internal feedback parameter and 2)
the positive contributions to the global internal feedback
over the eastern tropical Pacific have similar amplitude to
the negative contributions over the western tropical Pacific.
As discussed earlier, the feedbacks inferred from /\f and
thus L; may reflect either (i) the relationships between R
and local temperature and/or (ii) the relationships between R
and temperatures at locations that covary with local tempera-
ture. Nevertheless, the inferred importance of land surface tem-
peratures to the global-mean radiative response makes physical
sense for at least two reasons: 1) Continental temperatures ex-
hibit much larger variances on month-to-month time scales than
ocean temperatures (e.g., Fig. 4b) and thus account for much of
the covariability between R and T on intra-annual time scales;
2) Land surface temperatures account for ~14% of the radiative
response in a 4xCO, numerical simulation run with prescribed
surface temperatures and thus have a seemingly important
signature in the radiative response to climate change (Andrews
et al. 2021). The differences between the contributions of land
temperatures to the global feedback indicated in Table 1 and
those indicated in Andrews et al. (2021) presumably derive in
part from the associated patterns of surface temperature change:
The results in Table 1 are based on internal variability in surface
temperatures; the results in Andrews et al. (2021) are based
on the surface temperature response to increasing CO,. Nota-
bly, the role of the land surface cannot be inferred from the cur-
rently available Green’s function experiments, since they are
run using the AMIP protocol in which land surface tempera-
tures are free running (Gates et al. 1999).

There are two possible reasons that atmospheric Green’s
function experiments indicate larger differences between the
amplitudes of the feedbacks over the western and eastern
tropical Pacific than those suggested in the observational re-
sults (Fig. 4c): 1) Atmospheric Green’s function experiments
are forced with similar amplitude SST anomalies at all locations
(Bloch-Johnson et al. 2024), whereas the pattern in Fig. 4c is
scaled relative to the internal variability, which is larger in the
eastern tropical Pacific than in the western tropical Pacific
(Fig. 4b), and 2) as shown in the next section, the positive
covariability between R and the temperature field over the
eastern tropical Pacific is underestimated in long control
simulations run on many coupled-climate models.

5. Discussion
This section has four purposes:

1) To demonstrate that the method for computing L; and its
expansion coefficient time series is equivalent to maximum
covariance analysis (MCA) and the first iteration of partial
least squares (PLS) regression. The analogy indicates that ;
corresponds to the spatial pattern that explains the largest
possible covariance between R and T;.

2) To compare a) the contribution of the expansion coefficient
time series of L; to the global-mean radiative response with
b) the contribution associated with the response function
from a Green’s function experiment.

3) To probe the ability of climate models to simulate L;.
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4) To compare the results with those derived from principal
component analysis.

a. Relationship to maximum covariance analysis and
partial least squares regression

The local feedback parameter AR —and its weighted analog
L,—indicates regions where surface temperature variability
contributes to the global-mean radiative response and thus to
the global-mean climate feedback. Since the pattern L; is
equivalent to the covariance between the temperature field 7;
and the radiative response R [Eq. (6)], it follows that 7; can
be projected onto L; to form an estimate of the global-mean
radiative response that is due entirely to variations in the sur-
face temperature field. That is,

R, =T.L, @)
where R . denotes the estimate of the global-mean radiative
flux found by projecting 7; onto L;. Note that in the matrix
operation above, T; is the size M X N, L; is the size N X 1,
and R ; is the size M X 1, where M is the number of time steps
and N denotes the number of grid boxes.

The procedure for calculating L; and its expansion coeffi-
cient time series R 1 1s equivalent to both MCA and the first it-
eration of partial least squares (PLS) regression. In MCA, the
covariance matrix between two time-varying fields (M; and N;)
is decomposed using singular value decomposition (SVD) to
form a series of spatial maps in M; (referred to as the singular
vectors of M;) that explain the variance in N,, and vice versa
(Bretherton et al. 1992). The singular vector of M; that is associ-
ated with the largest singular value in the decomposition explains
the maximum fraction of the covariance with N;, and vice versa.
In the case of L; and R 1> MCA is being conducted between the
spatially varying surface temperature field 7; and the global-
mean radiative response R. Since R is a function of time only, the
covariance matrix R7; corresponds to a vector, and the leading
singular vector formed from MCA is simply RT;. Likewise, the
covariance matrix RiTl and its expansion coefficient time series
R ,, are equivalent to the first iteration of PLS regression (e.g.,
Abdi 2010; Smoliak et al. 2015). Since L; is proportional to
the covariance between R and T; [Eq. (6)], it follows that
R ., has the same direction as the leading predictors formed
from both MCA and PLS regression between R and 7.

Why does this matter? The analogy to MCA and PLS re-
gression indicates that L; and R ;. correspond to the pattern
and expansion coefficient time series that explain the largest
possible fraction of the covariance between 7; and R. Hence,
L, provides a basis for predicting R from variations in the tem-
perature field. Figure 5a probes the ability of R , to predict
monthly mean variations in R in observations and 1200 years
of preindustrial control output from the Max Planck Institute
(MPI)-ESM1.2 (Table 2; Mauritsen et al. 2019; Rugenstein
et al. 2019). All results are based on deseasonalized, monthly
mean values of the data and output. The control output is not
detrended since by construction there is no external forcing
and thus R = N. The y axis denotes the correlations between
the predicted and actual radiative responses (R ., and R); the x
axis denotes the length of the period of record used to form L.
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As a starting point, we consider the “in-sample” prediction
derived from observations, where in-sample indicates that the
pattern L; is found from the same period used in the projec-
tion R ; = T,L,. The predicted R , time series is found for ob-
servations by projecting the observed 7; onto L; from Fig. 4c.
The correlation between the observed RL and R is plotted in
Fig. Sa at 25 years on the x axis (i.e., the length of the observa-
tional record). The 95% confidence bounds are found using a
Fisher z transformation and accounting for the autocorrelation
in the time series. The in-sample prediction of the observed R
by the spatially varying temperature field is r ~ 0.53. That is,
the time evolution of the pattern in Fig. 4c explains roughly
28% of the monthly mean variance in R over the CERES pe-
riod of record.

We next consider the in-sample predictions derived from
the output from the MPI-ESM1.2 preindustrial control simula-
tion over a range of sample lengths. For reference, Fig. 5c
shows the spatial pattern of L; derived from all 1200 years of
the MPI-ESM1.2 preindustrial control output. The pattern is
characterized by negative values over much of the globe, with
large negative values found over land areas and a notable lack of
positive values over the eastern tropical Pacific. The in-sample
predictions provided by R ;. are shown in the blue dots and are
found as follows. For a given sample length n, we 1) calculate L;
in all nonoverlapping samples of length . Note that the L, can
vary from one sample to the next; 2) form R ,, in all samples by
projecting the in-sample 7; onto the in-sample L; and 3) calcu-
late the correlations between R and R ;. in each sample and then
average the correlations over all samples (the average correla-
tions are found as \/rz2 , where r denotes the sample correlations,
and the overline denotes the sample mean). The error bars indi-
cate the 95% confidence bounds found using the Fisher z trans-
formation. Note the error bars are smaller than those for the
observations since the correlations are averaged over multiple in-
dependent samples. The in-sample prediction of R by MCA is
roughly 7 = 0.51 when L; and R , are formed from samples that
are 20 years long (240 months) and decreases to roughly r = 0.39
for samples that are 100 years long. Hence, R 1. explains roughly
25% of the variance in monthly mean R for sample sizes of
20 years and about 15% of the variance for sample sizes longer
than 100 years. The correlations between R and R ;. decrease as
the sample size increases. Note that the correlation between R
and R ;. derived from observations is larger than the correlation
derived from MPI-ESM1.2 control output at a sample length of
25 years, but that the model output nevertheless lies within the
error bars of the observed correlation.

The results in the blue dots are based on in-sample correla-
tions and are thus susceptible to overfitting. That is, L; explains
the largest fraction of the covariance between R and 7}, but
some of the structure in L; is inevitably due to sampling vari-
ability and thus not stationary from one period to the next.
Hence, in the red dots, we show the out-of-sample correlations
between R and R 1» Where the projection R . = T,L,; is done
over a different period than that used to form the pattern L;. In
this case, for a given sample length 7, we 1) define a training
period of length n during the first 600 years of the simula-
tion, 2) calculate L; during the training period, 3) form RL
by projecting temperature during the last 600 years of the
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FIG. 5. (a) Dots: correlations between (a) the global-mean radiative flux and (b) the global-mean radiative flux predicted by projecting
T; onto L; [Eq. (7)]. The black dot indicates in-sample results for the observations, where in-sample indicates that the projection of 7; onto
L; is performed during the same period used to calculate L;. The blue and red dots indicate in-sample and out-of-sample results, respec-
tively, based on 1200 years of PI control output from the MPI-ESM1.2. The x axis denotes the length of the sample size used in the analy-
sis. Horizontal line: correlation between (a) the global-mean radiative flux and (b) the global-mean radiative flux predicted by projecting
T; onto the Green’s function G; from Alessi and Rugenstein (2023) over the last 600 years of the control integration. Error bars denote
the 95% confidence ranges based on one sample for the observations, the number of nonoverlapping samples available from the control
output (red and blue dots), and the range of uncertainty in the Green’s function prediction. See text for details. (b) Global-mean radiative
response to perturbations in regional temperature derived from the Green’s function experiments in Alessi and Rugenstein (2023). The
pattern in (b) is used to generate the horizontal line in (a). (c) The pattern of L; calculated from 1200 years of control output from the
MPI-ESM1.2. Versions of the pattern in (c) based on subsamples of the control output are used to generate the dots in the top panel.

simulation (the test period) onto L;, 4) calculate the correla-
tions between R and R ;, during the test period, and 5) repeat
the analysis over all possible nonoverlapping training periods
of length n during the first 600 years. The out-of-sample pre-
dictions of R by MCA are—as expected—notably less than
they are for the in-of-sample case. The correlations between
R and RL are roughly » = 0.29 for a sample size of 20 years
and asymptote to r =~ 0.34 for a 100-yr period of record. In
contrast to the in-sample case, the correlations for the out-of-
sample case increase with sample size since the amount of
data used to generate L; (i.e., the size of the training sample)
increases.

The key take-home messages from the above are that 1) L;
and its expansion coefficient time series R . =T,L, corre-
spond to the leading patterns formed from both MCA and
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PLS regression between the temperature field and global-mean
radiation. Hence, the spatial feedback pattern L; introduced
here corresponds to the spatial structure in 7; that explains a
largest possible fraction of covariance between R and T;,
and 2) for the out-of-sample case, the spatial feedback pattern
L; explains roughly * ~ 0.34*> ~ 12% of the variance in R
when the sample size exceeds ~100 years. The out-of-sample
correlations appear at first glance small: They indicate that
roughly 90% of the variance in monthly mean R is not ex-
plained by the time evolution of the leading temperature pat-
tern derived from MCA (and PLS regression) between R and
T;. However, as shown below, the variance explained by MCA
nevertheless exceeds that provided by output from a Green’s
function experiment.
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TABLE 2. Preindustrial control simulations from LongRunMIP
used in Figs. 5 and 6 (full references are provided in Table 2 of
Rugenstein et al. 2019).

Model identification PiControl length (yr)

CCSM3 3805
CESM1.0.4 1000
CNRM-CM6-1 2000
GFDL CM3 5200
GFDL-ESM2M 1340
IPSL-CM5A-LR 1000
MIROC3.2 681

MPI-ESM1.2 1237

b. Comparison with output from an atmospheric Green’s
function experiment

The Green’s function approach provides a Jacobian of the
simulated radiative response to temperature variations at all
locations dR,/0T;. When globally averaged, it provides a spa-
tial pattern G, = (IRMAT,) that indicates the simulated re-
sponse of the global-mean radiative flux to variations in
temperature at a given location. The distinctions between the
“response function” provided by the Green’s function ap-
proach (G)) and that provided by MCA (L;) can be conceptu-
alized as follows: At a given location, results based on L; arise
not only from the relationships between R and local tempera-
tures but also—due to the spatial structure of covariability in
the temperature field—from the relationships between R and
temperatures at all other locations where the temperature field
covaries with local temperature. In contrast, results based on G;
isolate the relationships between R and local temperatures. Put
another way, the pattern L; may be viewed as a “statistical” re-
sponse function of R to T}, where T; includes spatially varying
covariability embedded in the temperature field; the pattern G;
may be viewed as a “causal” response function of R to 7;, where
T; is prescribed and thus only exhibits spatial structure if such co-
variability is prescribed in the experiment procedure.

Here, we compare the results derived from MCA (and thus
PLS regression) to those derived from the Green’s function
experiments described in Alessi and Rugenstein (2023). The
experiments in Alessi and Rugenstein (2023) are run on the
same atmospheric model used in the coupled ocean/atmosphere
control experiment analyzed in the previous section (MPI
ECHAMSG6) and thus allow us to test results based on L; with
those derived from G; using the same atmospheric model.
The spatial pattern of G; from the experiments in Alessi and
Rugenstein (2023) is shown in their Fig. 1a and reproduced
here in Fig. 5b. As is the case for other Green’s function-type
experiments (e.g., Dong et al. 2019), the Green’s function re-
sponse is dominated by negative relationships between 7; and
R over the western tropical Pacific. The G; (Fig. 5b) and L;
(Fig. 5¢) patterns derived from the MPI numerical model both
exhibit negative values in the tropical Pacific, but exhibit nota-
ble differences elsewhere, in particular the L; pattern exhibits
large negative values over land areas.

The global-mean radiative response predicted by the time
evolution of the Green’s function pattern in Fig. 5b can be
found in a similar manner to Eq. (7):
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R, =TG, ®)
where R ¢ denotes the estimate of the global-mean radiative
flux derived by projecting 7; from the control simulation onto
G;. The horizontal line in Fig. 5a shows the correlation be-
tween R c and R over the 600-yr period of record from the
MPI-ESM1.2 control simulations (i.e., the same period used
to test the out-of-sample MCA). The Green’s function ap-
proach yields a correlation between the actual and predicted
global-mean radiative flux of » ~ 0.3. Consistent with the dis-
cussion of MCA above, the in-sample correlations provided
by L; exceed those provided by G; regardless of the sample
size. For the out-of-sample case, the error bars on the predic-
tive skill afforded by the Green’s function approach overlap
those associated with MCA for sample sizes greater than
roughly 30 years. The key result in Fig. 5 is thus that—for sam-
ple sizes greater than a few decades—MCA yields effectively
the same predictive skill for monthly mean variations in TOA
radiation as that provided by the Green’s function found from
fixed SST experiments run on the same atmospheric model.
Note that results in Fig. 5 are based on a statistical response
function L; estimated from—and applied to—the radiative re-
sponse to internal variability. In a companion study (L. Fredericks
et al. 2025, unpublished manuscript), we explore the ability of
MCA and other statistical methods to estimate the radiative re-
sponse to greenhouse gas forcing.

The correlations between the actual radiative flux R and that
predicted by the Green’s function approach RG indicated in
Fig. 5 are weaker than those reported in Dong et al. (2019) and
Alessi and Rugenstein (2023). Dong et al. (2019) report correla-
tions in excess of r ~ 0.9 between their R and R o> Alessi and
Rugenstein (2023) report correlations approaching r ~ 0.5. Sev-
eral factors contribute to these differences. First, the results in
Dong et al. (2019) are based on comparisons with R formed
from prescribed SST experiments rather than a coupled atmo-
sphere/ocean GCM. Their results confirm the linearity of the ra-
diative response to SST patches but do not prove the ability of
the Green’s function approach to reproduce observed, internal
variability in R. Second, the results in Dong et al. (2019) and
Alessi and Rugenstein (2023) are based on annual-mean out-
put, whereas the results here are based on monthly mean out-
put which includes considerably more variance in R.

c¢. Spatial patterns of the local feedback /\,-R in
preindustrial control simulations

A central feature arising from the observational analyses in
the previous sections is the large positive correlations between
local temperature and the global-mean radiative flux over the
eastern tropical Pacific. Figure 6 probes the ability of climate
models to reproduce the observed relationships between R and
temperatures in this region. The upper panels in Fig. 6 show Af
calculated from eight preindustrial control simulations run un-
der the auspices of Long Run Model Intercomparison Project
(LongRunMIP) (see Table 2 here and Rugenstein et al. 2019;
note that the AR map for the MPI-ESM1.2 is derived from the
same output used to generate the L; map in Fig. 5c). As indi-
cated in the regression maps and summarized in the violin plots
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FIG. 6. (first row— fourth row) The local parameter A,R as in Figs. 2a and Fig. 4a, but for climate models ar-
chived via LongRunMIP that have long (>600-yr) preindustrial control simulations (Table 1). Boxes indicate the
equivalent-sized areas used to generate the results in the bottom row: 110°~150°E and 14°N-14°S in the western
tropical Pacific and 110°~70°W and 5°-35°S in the eastern tropical Pacific. (bottom row) Red line: regression coef-
ficients averaged over the western and eastern tropical Pacific (boxed areas in upper panels) based on observa-
tions. Black violin plots: regression coefficients averaged over the boxed areas calculated from all possible consec-
utive 298-month periods in the control model output (the length of the observational record is also 298 months).
The 95% confidence interval for the observed values is found from the standard error of the regression.
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at the bottom of Fig. 6, the climate models listed in Table 2 gen-
erally reproduce the region of negative covariability between 7;
and R over the western tropical Pacific in 25-yr subsamples of
the output (i.e., subsamples comparable to the length of the ob-
servational record). However, they generally do not reproduce
the robust positive covariability between 7; and R over the east-
ern tropical Pacific. Of the eight models considered in Fig. 6,
positive regression coefficients that overlap the observational
uncertainty arise in less than roughly 1% of all 25-yr samples in
four models and in less than roughly 5% of all 25-yr samples in
another three models. Only the MIROC control simulation
yields values of AR over the eastern tropical Pacific that match
observations in a majority of all samples.

Most Green’s function experiments indicate positive contri-
butions from surface temperatures over the eastern tropical
Pacific to the global-mean radiative feedback (Bloch-Johnson
et al. 2024, cf. Fig. 2). However, the results shown in Fig. 6
clearly indicate that the LongRunMIP simulations do not repro-
duce the observed covariability between surface temperatures
over the eastern tropical Pacific region and the global-mean ra-
diative flux on monthly mean time scales. The differences be-
tween the observed (Fig. 2a) and modeled (Fig. 6) relationships
between R and temperatures over the eastern tropical Pacific
may reflect biases in the model radiative response to SST anom-
alies in the eastern Pacific, or they may reflect biases in model
representations of the patterns of internal climate variability;
ie., AR is influenced by the spatial patterns of variability in the
monthly varying temperature field. It would be interesting to
compare the observed AR with that derived from AMIP-style
prescribed SST experiments, in which the spatial coherence of
the SST field is by construction identical in the simulation and
observations.

d. Comparison with results based on principal
component analysis

As discussed above, the analysis applied here (i.e., MCA or
PLS regression between 7; and R) is not directly comparable
to results derived from Green’s function experiments. That is
because MCA and PLS regression retain the spatial coher-
ence of the temperature field, whereas Green’s function ex-
periments hold temperature fixed at all locations other than
the forcing region. However, an analogy can be drawn between
the Green’s function approach and multilinear regression (MLR),
whereby the global radiative response is treated as the linear
combination of independent responses to temperature at all
separate locations. Since MCA and PLS regression are solu-
tions to the MLR problem, it follows that they are conceptually
related to the Green’s function approach. We have also repro-
duced the analysis here using the ordinary least squares (OLS)
solution to MLR, and the results are explored in a companion
study (L. Fredericks et al. 2025, unpublished manuscript). In
short, for sample sizes comparable to the observed record, the
OLS solution to MLR reproduces the broad features found in
MCA, including the regions of positive coefficients over the
eastern Pacific and negative coefficients over the western
Pacific. The OLS solution provides better predictive skill than
MCA, but the results are also more sensitive to overfitting.
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FIG. 7. Comparing the prediction of R provided by MCA and
PCA. The horizontal line shows the correlation between R and the
expansion coefficient time series of L; from Fig. 4c. The dots show
the cumulative correlations between the PCs of the ERAS 2-m
temperature field and R, where the cumulative correlations are
found as the square root of the sum of the squared correlations.
Roughly, the first 26 PCs of the temperature field are required to
match the explanatory power of MCA.

The robustness of the MCA (and PLS regression) solution
highlighted here is exemplified by comparing the results with
those derived from the leading principal components (PCs)
of the temperature field. The advantage of using PCs is that they
retain the spatial structure inherent in the temperature field, and
they also provide an orthogonal basis set of predictors. The re-
sults based on PC analyses of 7; from ERAS are shown in Fig. 7
and are formed as follows. The horizontal line shows the correla-
tion between R and the expansion coefficient time series derived
from MCA analysis, that is, the correlation between R and
R, = T,L;, where L, is shown in Fig. 4c. The dots show the cu-
mulative correlations between R and the PCs of the ERAS near-
surface temperature field, where the cumulative correlations are

found as ,lzirz(PCi, R). For example, the correlation between

R and PC; is r = 0.16, and the cumulative correlation between R
and PCs 1-10 is r = 0.43. As evidenced in the figure, roughly the
first 26 PCs of the temperature field are required to match the
explanatory power of MCA. A similar comparison between
MCA and PC analyses was conducted in Thompson et al. (2009)
for the case of the spatially varying pressure field and hemi-
spheric mean surface temperature (see their Fig. 3).

6. Conclusions

Spatially varying radiative feedbacks are commonly
assessed using two different regression-based parameters
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(Feldl and Roe 2013; Sherwood et al. 2020; Hedemann et al.
2022): the local radiative response regressed on local tempera-
ture A = (AR/AT,) and the local radiative response regressed
on global-mean temperature A! = (AR/AT). Both have been
widely explored in previous work. Here, we have explored the in-
sights provided by an alternative spatially varying parameter:
the global-mean radiative response regressed on local tem-
perature: AR = (AR/AT,). When estimated from linear least
squares regression between R and Tj, the parameter is found
as Al = (RT/T2)

The AR parameter highlights regions where surface temper-
ature covaries with the global-mean radiative response. The
parameter yields physically meaningful structures when esti-
mated from monthly mean observations of CERES radiative
fluxes and surface temperatures. It confirms that anomalously
warm surface conditions in regions of tropical deep convection
are associated with anomalously upward global-mean radiative
fluxes, consistent with negative climate feedbacks associated
with temperature variability in these regions. Notably, it also
indicates that warm conditions over the southeastern tropical
Pacific are associated with similarly large downward global-
mean radiative fluxes, consistent with positive climate feed-
backs due to temperature variability there.

The AR parameter can be transformed into a form that can
be globally averaged by multiplying it by the ratio of the local
to global-mean temperature variance. The weighted parameter
L= AR(TIT?) = (R_Ti/ T?) provides estimates of the contribu-
tion of the local temperature field to the global feedback. The
pattern L; may be viewed as a statistical response function
that is analogous to the causal response functions provided
by atmospheric Green’s function experiments forced with
prescribed changes in SSTs. The differences between the two
response functions lie in the interpretation: The statistical re-
sponse function L; reflects the linkages between local surface
temperature variability and the global-mean radiative response
and is independent of whether the feedbacks are occurring
locally, or over regions where the temperature field covaries
with local temperature. The causal response function given
by the Green’s function approach derives entirely from the
global-mean radiative response to the prescribed SSTs (or the as-
sociated changes in the free-running land surface temperature).
The advantage of the statistical response function highlighted
here is that it accounts for the naturally occurring patterns of
internal variability in the temperature field. The disadvantage is
that it does not uniquely isolate the specific regions associated
with the underlying feedbacks.

The results of the statistically based response function L; in-
dicate that 1) the contribution of temperature variability in the
southeastern tropical Pacific to positive values in the global in-
ternal feedback parameter is comparable to 2) the contribu-
tion of temperature variability in the western tropical Pacific
to negative values in the global feedback parameter. They also
indicate that variability in global-mean land temperatures con-
tributes to roughly 70% of the global-mean, negative internal
feedback. In contrast, Green’s function experiments indicate
that the positive feedbacks over the eastern tropical Pacific are
generally weaker than the negative feedbacks found over the
western Pacific. The existing Green’s function experiments
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also do not consider the role of surface temperature feedbacks
over land areas since they are forced only by temperature
patches over the oceans.

The parameter L; is equivalent to the leading pattern formed
from MCA and PLS regression between surface temperature
field and the global-mean radiative response R. Hence, the ex-
pansion coefficient time series formed by projecting tempera-
tures onto L, that is, R . = T,L;, explains a larger fraction of
the covariance between R and 7; than that associated with any
other pattern in the temperature field. For example, roughly
the first ~25 PCs of the surface temperature field are required
to match the variance in the global-mean radiative flux that is
explained by the single temperature pattern derived from
MCA and PLS regression. We tested the ability of R ,, to explain
variations in the global-mean radiative flux in 1200 years of out-
put from a coupled atmosphere/ocean model simulation and
compared its performance to the output from an atmospheric
Green’s function experiment run on the same version of the at-
mospheric component of the coupled model. For sample sizes
longer than ~30 years, the out-of-sample prediction of monthly
mean values of R by the pattern L; is statistically indistinguishable
from that provided by output from the Green’s function experi-
ment. We also probed the ability of climate models to reproduce
AR and L; The relationships between R and temperatures over
the southeastern tropical Pacific are notably underestimated in all
but one of the eight control simulations considered here.

As is the case for any observational study of global climate
feedbacks, the results here are limited to the CERES era, in
our case 25 years. They are thus more susceptible to sampling
variability than results based on, say, long simulations run on
climate models. Nevertheless, the robustness of the key features
revealed by AR—particularly the positive values over the east-
ern tropical Pacific, negative values over the western tropical
Pacific, and negative values over the land areas—is supported
by several sensitivity tests. The key tropical features are associ-
ated with 7 scores that exceed |3|, are reproducible in seasonally
stratified subsets of the data, are reproducible in annual-mean
versions of the data, and are not sensitive to the choice of remov-
ing F by either (i) detrending N or (ii) subtracting the ARG6 radia-
tive forcing estimate from N. The negative feedbacks over the
land areas are not significant at the gridbox level due to the large
amount of internal variability at the local scale, but they are
highly significant when averaged over large spatial areas. Regres-
sion dilution is expected to bias the amplitudes of the linear re-
gression coefficients, but it does not affect the sign of the
regression and thus the general spatial structure of AX. Tt does
not affect the pattern of L; since the covariance is commutative.

Overall, the results shown here provide a statistical frame-
work for assessing the temperature pattern effect on the
global-mean radiative response in observations and models;
reveal the prominence of positive internal feedbacks due to
temperature variability in the eastern tropical Pacific; and
highlight the importance of the land areas in governing the
amplitude of the global-mean, negative internal feedback.
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APPENDIX

Significance of Figure 2a

The top panel in Fig. Al is based on the same data used in
Fig. 2a but shows the correlations rather than regressions be-
tween global-mean net TOA radiative fluxes R and local sur-
face temperature anomalies 7;. Results are based on monthly
mean, detrended values of CERES radiative fluxes and ERAS
2-m temperature. The bottom panel shows the correspond-
ing ¢ scores, where the effective sample size is found after
accounting for the autocorrelations in both the R and 7;
time series. The ¢ scores are shown for values greater than 2.
The ¢ scores > [2| are significant at the 95% level based on a
two-tailed test of the ¢ statistic; ¢ scores > |2.6] are significant
at the 99% level. Results over the southeastern tropical
Pacific include ¢ scores > [4].
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Correlations between Rand T, (}\iR)

t-score

FiG. Al. (top) Correlations between global-mean net TOA
radiative fluxes R and local surface temperature anomalies 7.
(bottom) The ¢ scores for the correlation coefficients shown in
the (top). As in Fig. 2, results are based on monthly mean, de-
trended values of CERES radiative fluxes and ERA5 2-m tempera-
ture. The ¢ scores are shown for values greater than 2. The ¢ scores
> 2 are significant at the 95% level based on a two-tailed test
of the  statistic; ¢ scores > 2.6 are significant at the 99% level.
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