

Condensation

- Condensation is the phase transformation of water vapor to liquid water
- Water does not easily condense without a surface present
 - Vegetation, soil, buildings provide surface for dew and frost formation
 - Particles act as sites for cloud and fog drop formation

Dew

- Surfaces cool strongly at night by radiative cooling
 - Strongest on clear, calm nights
- The *dew point* is the temperature at which the air is saturated with water vapor
- If a surface cools below the dew point, water condenses on the surface and dew drops are formed

Frost

- If the temperature is below freezing, the dew point is called the frost point
- If the surface temperature falls below the frost point water vapor is deposited directly as ice crystals
 deposition
- The resulting crystals are known as frost, hoarfrost, or white frost

Cloud and fog drop formation

- If the air temperature cools below the dew point (RH > 100%), water vapor will tend to condense and form cloud/fog drops
- Drop formation occurs on particles known as cloud condensation nuclei (CCN)
- The most effective CCN are water soluble.
- Without particles clouds would not form in the atmosphere
 - RH of several hundred percent required for pure water drop formation

Typical sizesImage: Typical sizesImage: Typical sizesTypical sizesCondensationUse of typical sizes

Fogs

- Fogs are clouds in contact with the ground
- Several types of fogs commonly form
 - Radiation fog
 - Advection fog
 - Upslope fog
 - Evaporation (mixing) fog

Radiation Fog

- Surface radiation and conduction of heat away from the overlying air cool air temperatures near the ground
- A layer of air near the ground becomes saturated and fog forms
- Fog deepens as radiative cooling from the fog top continues overnight
- Solar heating warms the ground and causes the fog to "burn off" from the ground up
- What type of meteorological conditions would favor radiation fog?

Advection Fog

- Warm air moves (is *advected*) over cold surface
- Cold surface cools warm air
- If saturation is reached, fog forms
- Common on west coast of U.S.
 - Warm moist air from Pacific is advected over upwelling cold coastal waters
 - As foggy air moves ashore, solar heating warms the ground and overlying surface
 Fog evaporates near ground
 - Coastal advection fogs are key moisture sources for California Redwoods

Other Fog Types

- Evaporation (mixing) fog
 - Mixing of warm, moist air with colder air produces saturated air parcel
 - Examples
 - Exhale on a cold day
 - Evaporation of water from relatively warm, wet surface and mixing with colder air above.
 - (Smokestack plume, contrails)

- Upslope fog
 - Moist air flows up along sloped plain, hill or mountain
 - Expansion of rising air causes cooling and RH increases

Clouds

- Clouds result when air becomes saturated away from the ground
- They can
 - be thick or thin, large or small
 - contain water drops and/or ice crystals
 - form high or low in the troposphere
 - even form in the stratosphere (important for the ozone hole!)

- Clouds impact the environment in many ways
 - Radiative balance, water cycle, pollutant processing, earth-atmosphere charge balance, etc....

Cloud classification

- Clouds are categorized by their height, appearance and vertical development
 - High Clouds generally above 16,000 ft at middle latitudes
 Main types Cirrus, Cirrostratus, Cirrocumulus
 - Middle Clouds 7,000-23,000 feet
 - Main types Altostratus, Altocumulus
 - Low Clouds below 7,000 ft
 - Main types Stratus, stratocumulus, nimbostratus
 - Vertically developed clouds (via convection)
 - Main types Cumulus, Cumulonimbus

High Clouds

- High clouds
 - White in day; red/orange/ yellow at sunrise and sunset
 - Made of ice crystals
 - Cirrus
 - Thin and wispy
 - Move west to east
 - · Indicate fair weather
 - Cirrocumulus
 - Less common than cirrus
 - Small, rounded white puffs individually or in long rows (fish scales; mackerel sky)

- Cirrostratus
 - Thin and sheetlike
 - Sun and moon clearly visible through them
 - Halo common
 - Often precede
 precipitation

Cirrocumulus

Cirrocumulus at Sunset

Cirrostratus

Cirrostratus with Halo

Middle Clouds

- Altocumulus
 - <1 km thick
 - mostly water drops
 - Gray, puffy
 - Differences from cirrocumulus
 - Larger puffs
 - More dark/light contrast
- Altostratus
 - Gray, blue-gray
 - Often covers entire sky
 - Sun or moon may show through dimly
 - Usually no shadows

Alto Stratus Castellanus

Altocumulus

Altocumulus

Alto Cumulus Radiatus

At a trutte

Alto Cumulus Undulatus

Low Clouds

- Stratus
 - Uniform, gray
 - Resembles fog that does not reach the ground
 - Usually no precipitation, but light mist/drizzle possible
- Stratocumulus
 - Low lumpy clouds
 - Breaks (usually) between cloud elements
 - Lower base and larger elements than altostratus
- Nimbostratus
 - Dark gray
 - Continuous light to moderate rain or snow
 - Evaporating rain below can form *stratus fractus*

Stratus fractus

Looking down on an eastern Atlantic stratus deck

Stratiform cloud layers

Stratocumulus cloud streets

Stratus undulatus

Vertically developed clouds

- Cumulus
 - Puffy "cotton"
 - Flat base, rounded top
 - More space between cloud elements than stratocumulus
- Cumulonimbus
 - Thunderstorm cloud
 - Very tall, often reaching tropopause
 - Individual or grouped
 - Large energy release from water vapor condensation

Cumulonimbus with Pileaus caps

Cumulonimbus Clouds Spawn Tornadoes

Cloud type summary

Satellite observations

- Satellites can be
 - Geostationary
 - Monitors fixed spot on Earth's surface
 - Polar orbiting
 - Orbit poles with Earth revolving below
- Satellites observe
 - Clouds
 - Water vapor
 - Precipitation
 - Surface properties (temperature, snow cover, vegetation, etc...)

Visible and Infrared Satellite Photos

