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The observed evolution of the global-mean surface temperature over the3

twentieth century reflects the combined influences of natural variations and4

anthropogenic forcing, and it is a primary goal of climate models to repre-5

sent both. In this study we isolate, compare, and remove the following nat-6

ural signals in observations and in climate models: dynamically induced at-7

mospheric variability, the El Niño-Southern Oscillation, and explosive vol-8

canic eruptions. We make clear the significant model-to-model variability in9

estimates of the variance in global-mean temperature associated with these10

natural signals, especially associated with the El Niño-Southern Oscillation11

and explosive volcanic eruptions. When these natural signals are removed12

from time series of global-mean temperature, the statistical uncertainty in13

linear trends from 1950 to 2000 drops on average by about half. Hence, the14

results make much clearer than before where some model estimates of global15

warming significantly deviate from observations and where others do not.16
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1. Introduction

The twentieth century evolution of global-mean surface temperature re-17

flects the combined influences of naturally occurring climate fluctuations18

(e.g., oceanic, volcanic, dynamical and possibly solar variability), anthro-19

pogenic emissions of various gases and aerosols (e.g., greenhouse gases, sul-20

phate aerosols, and black carbon aerosols), and land use changes (e.g., de-21

forestation). In a recent study some naturally occurring fluctuations were identified22

and removed by subtracting from the observed record of global-mean surface temperature23

three known signals of natural climate variability, namely, dynamically induced atmo-24

spheric variability associated with anomalous temperature advection over the Northern25

Hemisphere land masses, the El Niño-Southern Oscillation (ENSO), and explosive vol-26

canic eruptions [Thompson et al. 2009]. The residual time series so obtained reveals near27

monotonic warming since about 1950, presumably of anthropogenic origin, as well as inter-28

annual variations tied to land-sea coupling. Here, we take the logical and important next29

step of extending this calculation to the multi-model ensemble of twentieth century simu-30

lations performed in support of the Intergovernmental Panel on Climate Change (IPCC)31

Fourth Assessment Report [IPCC, 2007]. The objectives of this study are two-fold: 1) To32

isolate and compare the observed and simulated signals of natural climate variability. 2)33

To compare the observed and simulated post-1950 trends in the presence and absence of34

these naturally occurring climate fluctuations.35
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2. Data and Models

The observed temperature data used in this study are the HadCRUT3 combined land36

surface temperature and sea surface temperature (SST) datasets [Brohan et al., 2006]. The37

temperature dataset is available via the Climatic Research Unit at the University of East38

Anglia and is provided in monthly-mean form on a 5◦ (latitude) by 5◦ (longitude) grid, and39

is expressed as anomalies with respect to the 1961 to 1990 base period. The observed sea-40

level pressure (SLP) data are provided by the National Center for Atmospheric Research41

Data Support Section and are also given as monthly-means on a 5◦ (latitude) by 5◦42

(longitude) grid as described in Trenberth and Paolino (1980). The seasonal cycle is43

removed from the SLP data by subtracting the long-term mean calculated for the period44

1950 to 2000 as a function of calendar month.45

The Atmosphere Ocean Coupled Climate Model (AOGCM) data used in this study are46

from the Coupled Model Intercomparison Project 3 (CMIP3) [Meehl et al., 2007] database47

of climate model simulations archived at the Program for Climate Model Diagnostics and48

Intercomparison (PCMDI) at the Lawrence Livermore National Laboratory. We consider49

a multi-model ensemble of twentieth century simulations driven with observed greenhouse50

gas and sulphate aerosol forcing, and in some cases, volcanic forcing. The 24 models con-51

sidered are BCC-CM1 (A,4), BCCR-BCM2-0 (B,1), CCCMA-CGCM3-1 (C,5), CCCMA-52

CGCM3-1-T63 (D,1), CNRM-CM3 (E,1), CSIRO-MK3-0 (F,3), CSIRO-MK3-5 (G,1),53

GFDL-CM2-0 (H,3), GFDL-CM2-1 (I,3), GISS-AOM (J,2), GISS-MODEL-E-H (K,5),54

GISS-MODEL-E-R (L,2), IAP-FGOALS1-0-G (M,3), INGV-ECHAM4 (N,1), INMCM3-55

0 (O,1), IPSL-CM4 (P,1), MIROC3-2-MEDRES (Q,3), MIROC3-2-HIRES (R,3), MIUB-56
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ECHO-G (S,5), MPI-ECHAM5 (T,1), MRI-CGCM2-3-2A (U,5), NCAR-CCSM3-0 (V,1),57

NCAR-PCM1 (W,4) and UKMO-HADCM3 (X,2); with model identifier and number of58

independent realizations analyzed shown in parentheses. The simulated surface tempera-59

ture and SLP fields are interpolated onto the same 5◦ (latitude) by 5◦ (longitude) grid as60

the observations and are thereafter treated identically to the observations including mask-61

ing with observed coverage. All significance testing in this study is at the 95% confidence62

level.63

3. Methodologies

The natural climate signals in monthly-mean global-mean surface temperature64

TGLOBAL(t) are estimated as follows using the method of Thompson et al. [2009].65

Dynamically induced signal. The dynamically induced signal is found on a month-by-66

month basis by regressing SLP anomaly maps onto normalized land-ocean temperature67

difference time series for the Northern Hemisphere. The coefficient time series of these68

SLP regression patterns define the dynamically induced signal T̂DY NAMIC(t).69

ENSO signal. The ENSO signal is estimated using a simple oceanic mixed layer model70

C(d/dt)T̂ENSO(t) = F (t)−T̂ENSO(t)/β, where F (t) is an estimate of the anomalous flux of71

sensible and latent heat in the eastern tropical Pacific; β is a linear damping coefficient set72

to 2/3 K W−1 m−2 ; and C is an effective heat capacity of the atmosphere-ocean system73

per unit area. The heat capacity is obtained such that the correlation coefficient between74

T̂ENSO(t) and TGLOBAL(t) is maximum based on de-trended data from 1950 through 2000.75
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The results in this study are largely insensitive to the choice of β, or computed76

values of C.77

Volcanic signal. The volcanic signal T̂V OLCANO(t) is estimated from the oceanic mixed78

layer model as above where F (t) is derived from optical thickness data; β is set to 2/3 K79

W−1 m−2; and C is obtained optimally as above. For the observations we use the Sato80

et al. [1993] optical thickness data. For each model simulation that includes81

volcanic aerosols we use the reconstruction used to force that simulation, i.e.,82

Sato et al. [1993], Amman et al. [2003], or a very similar reconstruction.83

Using T̂DY NAMIC(t), T̂ENSO(t), and T̂V OLCANO(t), a multivariate regression was84

carried out using a prescribed first order autoregressive, AR(1), model for85

the noise ε(t). (The results are insensitive to higher orders of the AR noise86

model.) In this way we obtain TGLOBAL(t) = c + α t + TDY NAMIC(t) + TENSO(t) +87

TV OLCANO(t) + ε(t) with TDY NAMIC(t) = µ T̂DY NAMIC, TENSO(t) = ν T̂ENSO, and88

TV OLCANO(t) = ξ T̂V OLCANO. The constants α, µ, ν, and ξ are the regression89

parameters and c is a constant. Finally, we compute TRESIDUAL = TGLOBAL −90

TDY NAMIC−TENSO−TV OLCANO = c+α t+ε where TRESIDUAL represents the component91

of TGLOBAL that is linearly unrelated to the natural climate signals. One of the key92

advantages of this approach over, say, decadal averaging of the data is that it93

removes estimates of these components of natural variability without reducing the time94

resolution of the data.95
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4. Results

4.1. Climate evolution and the natural signals

Figure 1 (top panel) shows the evolution of observed and simulated twentieth century96

global-mean surface temperature anomalies. As a group the models show good97

agreement with the observed global-mean warming. Figure 1 (middle panels) gives98

the impression that for many models the variance in global-mean temperature associated99

with the ENSO signal is overestimated, and that there is a significant range of estimates100

associated with the volcanoes. We will quantify these visual impressions shortly. Figure101

1 (bottom panel) shows that with the natural climate signals removed from the observed102

global-mean temperature time series there is a large discontinuity around 1945, which103

has been ascribed to uncorrected biases in the SST record [Thompson et al., 2008]. The104

discontinuity does not appear in the climate model simulations, and hence the mismatch in105

global-mean surface temperature for the decade around 1945. Because of this discontinuity106

all subsequent calculations, including the multivariate regressions, are for the period after107

1950.108

Figure 2 shows the difference in standard deviation between each model and observations109

for the natural time series (top panels) and residual time series with the linear trend110

excluded (bottom panel). The bars reflect uncertainties arising from the multivariate111

regression. Note that the null hypothesis of no significant difference is rejected when the112

observed and simulated uncertainty ranges taken together exclude zero. The simulated113

ENSO values show a wide range, with 15 of 24 values deemed inconsistent with observed.114

Five of the simulated ENSO values are greater than 1.5 times observed, and one is about115
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2.5 times observed. The simulated volcanic values also show a wide range, with 2 of 11116

values deemed inconsistent with observed, at about 1.5 times observed. The simulated117

dynamically-induced and de-trended residual times series have 7 and 8 values inconsistent118

with observed, respectively. In short, the models produce a significant range of estimates119

of the variance in global-mean surface temperature associated with these climate signals.120

4.2. Trends and uncertainties

We now turn to an analysis of the trends γ and α in TGLOBAL(t) = d + γ t + η(t) and121

TRESIDUAL(t) = c+α t+ε(t), respectively, where η(t) and ε(t) are the regression residuals122

assumed to be AR(1) noise. Figure 3a shows that the observations and models display123

significant warming trends in both TGLOBAL (red bars) and TRESIDUAL (blue bars). The124

observed and model-mean trends in TGLOBAL are statistically indistinguishable, with val-125

ues of about 0.099◦C/decade and 0.100◦C/decade, respectively. Similarly, in TRESIDUAL126

the observed and simulated trends are about 0.100◦C/decade and 0.107◦C/decade, respec-127

tively. However, the variance across the model trends is about 25% smaller in TRESIDUAL128

than in TGLOBAL, indicating a tighter multi-model estimate absent the natural signals.129

Figure 3a also shows that of the models with volcanic forcing the majority130

underestimate the observed trend in TGLOBAL, but exhibit TRESIDUAL trends131

much close to that observed.132

Figure 3a shows that the individual confidence intervals in the TRESIDUAL are much133

narrower than in TGLOBAL, especially for the models that include volcanic forcing. It134

follows that the degree of consistency between a simulated and observed trend could be135

different depending on whether or not the natural signals are removed. To illustrate this136
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consider the null hypothesis that there is no significant difference between a model and137

observed trend – which would be rejected if the confidence interval for the difference time138

series were not overlapping zero. Here the difference time series is the difference between139

the given model and observed times series. Figure 3b shows that the outcome of the140

hypothesis test is changed for 7 models going from TGLOBAL to TRESIDUAL. For example,141

the null hypothesis is accepted in TGLOBAL of Models B, G, M, P and W, but rejected in142

TRESIDUAL because of the drop in uncertainty. On the other hand, the null hypothesis143

is rejected in TGLOBAL of Models I and O but accepted in TRESIDUAL because of the144

closer to observed trend estimates. It is also notable that there is no clear relationship145

between skill in reproducing trends and skill in reproducing natural variance (cf. Figure146

2). For example, Models I and T have large ENSO biases but near perfect residual trends.147

This highlights the difficulty in evaluating the ability of climate models to project future148

climate change based on their ability to simulate past natural variability.149

To understand the effect of natural signal removal on trend estimates we appeal to150

Santer et al. [2000; subsection 4.1] who provide trend and uncertainty formulae. To an151

excellent approximation these formulae recover the trends and uncertainties in Figure 3a152

(not shown). Uncertainty U involves the variance of regression residuals about the trend153

line D2 =
∑

e(t)2, as well as effective sample size ne ≈ n(1 − a1)/(1 + a1), where n is the154

number of time samples and a1 is the lag-1 autocorrelation of e(t). We want to understand155

how this uncertainty depends partly on the autocorrelation (more autocorrelation means156

more uncertainty) and partly on the variance around the trend line (more variance means157

more uncertainty). Accordingly, we use a simple algebraic manipulation of the expressions158
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in Santer et al. [2000] to obtain U = A(a1)D where A(a1) is then, by definition, a159

monotonically increasing function of a1. For small differences in trend uncertainty between160

the global and residual trends we can approximate that difference as arising from parts161

related to the autocorrelation and the variance: ∆U/U ≈ ∆A/A + ∆D/D. Figure 4a162

shows that the observed and model-mean uncertainty is about 50% smaller in TRESIDUAL163

than in TGLOBAL, due in about equal measure to lower autocorrelation and variance effects164

in the absence of the natural climate signals.165

5. Conclusions

A physically-based approach to isolating the signals associated with dynamically in-166

duced atmospheric variability, El Niño-Southern Oscillation (ENSO), and explosive vol-167

canic eruptions has been used in this study to compare and remove the signals of naturally168

occurring variability in observed and climate model simulated global-mean surface tem-169

perature over the twentieth century. We have made clear the significant model-to-model170

variability in estimates of the variance in global-mean temperature associated with these171

natural signals, especially with ENSO and explosive volcanic eruptions. We have also172

shown that the observed and simulated uncertainty in 1950-2000 trends drops by about173

half when the natural signals are removed, making clearer where the anthropogenic re-174

sponse in some models deviates significantly from observed. The simulated and observed175

global-mean temperature trends are statistically indistinguishable in 12 of 24 models for176

the raw data, but in 8 of 24 models for the residual data. Hence, the methodology em-177

ployed in this study has allowed us to separate the different contributions to variance178

in global-mean surface temperature, and this has led us to identify some key strengths179
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and weaknesses in: 1) climate models ability to simulate the observed variance in natural180

phenomena and 2) climate models ability to simulate the observed global-warming of the181

second half of the 20th century. Interestingly, the results reveal that there is no clear182

relationship between a model’s ability to simulate the variance of natural phenomena and183

the observed global warming.184
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Figure 1. The monthly-mean global-mean surface temperature anomalies; (middle) the natural

signals; (bottom) the residual time series found by removing the natural signals from TGLOBAL.
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Figure 2. The difference in the standard deviation of temperature between each model and

the observations. For the models the standard deviation and uncertainty is the average over all

available realizations.
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Figure 3. a. Individual trends. For the models both the mean and uncertainties are realization-

means. b. Difference trends based on the difference between the model and observed time

series. A bar not overlapping zero indicates a rejected null hypothesis that there is no significant

difference between the given model trend and the observed trend. “V” denotes the presence of

volcanic forcing.
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Figure 4. Percent difference in the trend uncertainty U (as in Figure 3a) between TRESIDUAL

and TGLOBAL. As described in Section 4 the trend uncertainty U is such that ∆U/U ∼ ∆A/A +

∆D/D, where ∆A/A and ∆D/D measure contributions arising from differing autocorrelation

and differing variance, respectively. Error bars are multi-model confidence intervals.
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